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3. Regular Languages

The family of regular languages
all finite language
closed under union, concatenation and closure.

Three equivalent descriptions on relular languages
regular expression
finite automata
regular grammar

Section 3.1
regular expression
relular language
Section 3.2
finite automata
regular expression <> finite automata
Section 3.3
regular grammar
finite automata <> regular grammar
Section 3.4
determnidic finite automata c finite automata
finite automata — determinidic finite automata
Section 3.5
some decision problems on regular languages
Section 3.6
lexical analysis
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3.1 Regular Expression
L anguage description
any finite means of specifying languages
finite number of finitely structured elements

writing down all the sentences finite language
rewriting system Infinite language

LcV  languages over V
countably infinite {0, 1}
A2  family of languages over V

uncountably infinite {0, 1}N
no description in general

regular expression over an alphabet V
well-formed expression
arguments € V u {g, &}

operators ~  closure
concatenation
U union
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Let Ebeastringover Vu{e, &, 7, -, U, ), (
(1) Eisaregular primary over V, if

symbol inV u {g, J}; or

(E) E isaregular expression over V.
(2) Eisaregular factor over V, if

regular primary over V; or

ES E isaregular factor over V.

(3) Eisaregular termover V, if
regular factor over V; or

E-E, E isaregular term
and E,isaregular factors over V.

(4) Eisaregular expression over V, if
regular termover V, or
E,UE, E isaregular expression

and E,isaregular term over V.

PY>Lle|M|(EB))
(Fy = Py |(F)"

(D =>E) ) -F)
(B) > (D [{B)u(T)

B->Le[WVIEB)]
(E) V(E) [<BE)-(B) |<B)”
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L(E) language denoted by a regular expression E.
(1a) L(Q) = @.

(1b) L(g) = {&}.

(Ic) L(a) = {a} Va e V.

(1d) L((E)) = L(E) Yregular expression E over V
(2) L(E) = (L(E)) "regular factor E over V

(3) L(E-E)=L(E)-L(E) "r.t. E andr.f. E, over V

(4) L(E\UE) = L(E)uL(E) "re.E andr.t.E,V

regular language L over V
L = L(E) for some regular expression E over V

Fact 3.2 Any finite language isregular.

A languagefamily F iseffectively closed under n-ary
operationf, if any n-tuple D;, ... , D, of language de-
scriptions, can be transformed into a description of
the language f(L(D,), ... , L(D,)).

A language family F is closed under f if
L, ..., L, e Fimpliesf(L, ..., L) € F.

closed vs effectively closed
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Lemma 3.3 Let E be aregular expression over V.
E can be transformed in time O(|E|) into a regular

expression that denotes L(E) .
Any pair of regular expressions E; and E, can be
transformed in time O(|E| + |E)|) into regular ex-

pressions that denotes L(E))L(E,) and L(E))UL(E,)).

(E), (E)(E), (B) v (Ey.
Theorem 3.4 (Kleene) For any alphabet V, the fam-
Ily of regular languagesover Visthe smallest family
of languages over V that contains all finite language
over V and is (effectively) closed under closure, con-
catenation, and finite union.

Two language descriptions D, and D, are equivalent,
iIf L(D,) = L(D,); inequivalent, otherwise.

Fact 3.5 For any regular expression there exists a
countably infinite number of equivalent regular ex-
pressions.

Proof. EEEUE,EUEUE,....

Given any class of language description D, any de-
scription in D usually has a countably infinite num-
ber of equivalent descriptions.

(renaming of symbols)
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A language description D isambiguous if some sen-
tencein L(D) isdescribed in two ways. A description
D isunambiguousif it is not ambiguous.

(1) 9, €, aand (E) are unambiguous, if
Va e V, E isunambiguous, respectively.
(2) E isunambiguousif E is unambiguous and
Vx € L(E’) Fone n>0, 3one sequence (x;, ... ,X))
2.X=X...%,1<1<n,x e L(E).
(3) B E, isunambiguous, if
(@) L(EE) = C; or
(b) iIf E, E, are unambiguous, and

Vx € L(EE,), Fone(y, 2) € L(E) x L(E)

2.YZ= X
(3) E; U E, iIsunambiguous, If

E,, E are unambiguous, L(E,) N L(E) = <.

ambiguity in language description
It may have two different meanings
enhanced description power

(OU1) (000U111)(0UL)

unambiguity of language description
may reduce the descriptive power
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description power of unambiguous regular language
same as unrestricted one
No “inherently ambiguous’ regular languages

Theorem 3.6 Any regular expression can be trans-
formed into unambiguous one.
Proof
regular expression = deterministic automaton
unambiguous automaton = unambiguous  .€.
deter ministic automaton — unambiguous automaton

The descriptions in Dy are at least as descriptive as
thosein D, if
"D, € D, °D; € D, L(D)) = L(D,).
(L(D) 2 L(Dy)
The description in D, are more descriptive asthose in
D,, if the descriptionsin D, are at least as descriptive
asthose in D, but
D, € D, D, € D, L(D,) = L(D,).
(L(D) > L(DY)
The descriptions in Dy are as descriptive as those in
D, if the descriptionsin D, are at least as descriptive
asthose D, and vice versa.

(L(D) = L(D)).
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The descriptionsin D, are at least as succinct asthose
inD, if

"D, € D,, D, € D, L(D,) = L(D,),

the size of D, Isat most linear in the size of D.,.
Thedescriptionsin D, areassuccinct as(or equivalent
In succinctness) thosein D, If ...

Let f be a function: natural numbers — positivereals
The descriptions in D, can be f(n) more succinct than

thosein D, if °L,, ... L, ... each L hasdescription in
D, size of L is O(n) but the equivalent description in
D, are of size at |east f(n).

Proposition 3.7 There exist a constant ¢ > 0 and an in-
finite sequence of regular languages L, L, ... over {0,

1} such that each L is denoted by an ambiguous reg-

ular expression of length O(n) but any unambiguous
regular expression denoting L, must have length at

least 2°".

(Ambiguous) regular expressions are

2" more succinct than
unambiguous regular expressions.
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3.2 Finite Automata

Let M = (V, P) be arewriting system.
QuX=V,QnX=¢d,qeQandFcQ.

M= (Q, %, P, q, F) isafinite automaton with
state alphabet Q,

Input alphabet 2,
initial state a.,
set of final states  F,
rules P, if
gX — p q,peQ xeX.

X transition(transition on x) from state q to p.

configuration(instantaneous description) of M
gw gwe QY.

gw initial forwe ¥, ifq=q.
gw  accepting, ifw=¢,q e F.
gw  error, if nonaccepting,
0<Vk<|w|, gkw — p ¢ P.

computation(process) of M on input string w
derivation in M from initial configuration gqw

accepting computation,
If it end with accepting configuration
M accepts w, if it has an accepting computation.
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language accepted(recognized or described) by M
L(M) = {we £| qw=qinM, q € F}.

transition graph

nodes Q
edges (g, p) gX—>peP
labeled by x

A finite automaton is ambiguous,
If it accepts some sentence in two distinct ways

Jat least two accepting computation,
It IS unambiguous, otherwise.

A state p is reachable from a state g upon reading w

qw = p.
A state p is accessible upon reading w,
qw = p.

Fact 3.8 A finite automaton accepts w, iff some final
state is accessible upon reading w.

accessible state
A statethat isaccessi ble upon reading some string
Inaccessible state, if it is not accessible.

A fa with no inaccessible state Is called reduced.
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Lemma 3.9 The set of states reachable from a given
state of a finite automaton M can be computed intime
O(IM).
Proof.

¢, reaches g, If M hasatransition from g, to g,

In O(|M])
g, reaches g, in O(|M|) by theorem 2.2

Theorem 3.10 Any finite automaton M(Q, Z, P, g, F)

can be transformed in time O(|M|) into an equivalent
reduced finite automaton M(Q’, %, P’, q, F’), where

QcQP cP,andF cF.

A state g islive, it some final state isreachable from
It. A state that isnot live is dead.

Lemma 3.11 The set of live states of a finite automa-
ton M can be computed in time O(|M|).

Proof.  (set of live states) (reaches 1) F.

Fact 3.12 Let M be an unambiguous finite automa-
ton, Then for any accessible live state g, and ¢,, and
any input string X, there isat most one derivation of
q, fromgx in M.
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A finite automaton is normal-form, if
gt—>q e P, te XU {e}.

A finite automaton is e-free, if no e-transition.

Normal-form finite automaton are equivalent in de-
scription power aswell assuccinctnessto unrestrict-
ed finite automaton.

Theorem 3.13 Any fa M = (Q, X, P, q, F) can be
transformed in time O(|M|) into an equivalent nor-
mal-formfaM’ = (Q', X, P, q/, F'). Moreover M’
Isambiguousiff M is, and M’ ise-freeiff M is.
Proof.

Q ={[dl lae Qt u{[ax] |axy>pe P,y € X}
[a].

Fj =1ld] |q < F}.

P"={ldl = I[pllg—>pe P}

U{[gxla— [gxa]| a € Z, gxay—p € P,y € X'}

u{lgxla— [p]|aec Z,gxa—> p € P}
) g—>peP

[aw] = [Pw].
i) ga,...a,>p e P,nx=1

[dla...aw =\, [0&]a&,...aW =, ... =,
[@y.-8, 11 8W = [Plwin M
L OX—>pe P iff[gqlxw=" [plwin M.
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Ifga...a,>p e P,nx1

[ala, = [ga],

[aay]a, — [aaa)],

[08y. -8, 281 = [y Gl

[d8,...8. 8, > peP
IP|: (n+2) = |P’|: 3n

Lemma 3.14 Any normal-formfaM = (Q, %, P, q, F)

can be transformed in time O(|Q|-|M|) into an equiv-
alent e-freefaM" = (Q, Z, P", q, F"). Moreover If M

IS unambiguous, then so isM".
Proof

P'={ga—>p|ig 5.9=>0",g'a—>peP}
F'={da=>q" € F}
L gWw=pinM,iffgw=q" andg" = pin M.
M" may remove some ambiguities on sequences of ¢-
MOVES.
g empty-transp, iff g — p € P of size O(|M|).
gempty-trans p,iffg=pe P
In time O(|Q|-|M|) Theorem 2.3.
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Theorem 3.15 Any fa M can be transformed in time

O(IMJ?) into an equivalent e-free normal-form fa.
Moreover iIf M isunambiguous, so Istransformed au-
tomaton.

Nonlinear time bound in theorem 3.15

fawith e-transition is O(|M|%) more succinct than
e-free counterpart
L,,L,... eachL non-e-freenf.fa O(n)

e-free normal-form fa at least 3n(n+1)/2.

finite automaton

U O(n) in succinctness
reduced fa

U O(n) in succinctness
normal formfa

U O(m) in succinctness
e-freefa

e-free normal-formfa at least 3n(n+1)/2.

Exercises 3.7
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Theorem 3.16 Any regular expression E over X can
be transformed in time O(|E|) into an equivalent fi-
nite automaton M(E) with input alphabet . More-
over M(E) isunambiguous iff E is.

(1a) M()

-0 O
(1b) M(e)

=0
(1c) M(a)

—

(1d) M((B))
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(2 M(E)

€

-O«eO O

(3) M(EE))

(4) M(EVE)
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L .o = {017 n> O} isnot regular.
Proof pumping
Assumel . isregular.

e-free and normal-form automaton M.
assumen=|Q|+ 1

01" & g1"> g e F
Sncen>|Q|,%i >0,k>0,andp e Q.

qO"M" & pO™In & pOkIN Bk gt By g e F
o qoOkoKIN (= O = g e F, Y > 0.
but 00 K0 *1N g L ..

Theorem 3.17 Any fa M = (Q, %, P, g, F) can be

transformed in time O(|Q|-|M|-4l) into an equivalent
regular expression E(M) over X. Moreover M is am-
biguousiff M Is.

Proof Let Q={q, ..., q}, for 1<i,J<n,0<k<n

E*  aregular expression, x € L(E;)
q isreachabl gloneor more) from ¢ upon reading x
without going through any state g, .>. m> k.

L(Eijk): {%eZ] o = %X - = G X, M2,
050:q,a%:c],xn:g,qsk,lgvlgml}.
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Fork=0,E°=x ... ux, where
gx — q € P, for 1<l<m,

= O, otherwise.
For k> 0,
(1) Eijk = (Ejk_l)Jr, I=]=Kk.
(2) E*= E*L(E,Y =k
(3) Eijk — (Eikk_l)*'Ekjk_l izk;tj.

(4) Eijk = Eijk—1 U Eikk_l'(Ekkk_l)*'Ekjk_l 2k,

(B’

o

£

E(M) = Esflnu U Esfm”u E..
where g, isa initial state, {ql, N qm} = F, and

E=c¢cifgeF E=J,0¢F.
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Theorem 3.18 A language over X is regular, if and

only if it is the language accepted by some automa-
ton with input alphabet .

fa=re exponential time bound
re=fa linear time bound

Infinite sequence of regular languagesL,, L, ...
L, ¢-free normal formfa O(1?),
regular expression 2.

fa can be exponentially more succinct than re.

finite automaton

U O(n)in succinctness
reduced fa

U O(n) in succinctness
normal formfa

U O(m) in succinctness
e-freefa

U O in succinctness
regular expression
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3.3 Regular Grammars

Let G = (V, P) be arewriting system.
NuUX=V,NnX=¢ and Se N.
G=(N, %, P, S isarignht linear grammar with

nonterminal alphabet N,
terminal alphabet 2,
start symbol S and
rules P, if

A—>x, A—->xB, ABeNxeX.
G=(N,Z, P, S isaleftlinear grammar, if
A—>Xx A—>Bx, ABeN,xeX.
A rewriting systemisaregular grammar, if
It iseither right [inear or left linear.
language generated(described) by G
L(G) = Lx(9 ={we X| S=>winG}.

sentential forms in regular grammar
S XA=>xyB=xyz, A>yBeP.
right linear single rightmost nonterminal
S= AX=Byx=2zyx, A>ByeP.
left leaner  single leftmost nonterminal

OXYZ=> QYZ=> 0hZ= Ok, QY > G € P, 0= € F.

G Is ambiguous, if some sentence in L(G) has two
distinct derivations,; otherwise unambiguous.
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Theorem 3.19 Any fa M = (Q, X, R,, q, F) can be

transformed in time O(]M|) into an equivalent right-
linear grammar G(M) = (N, Z, F;, S. Moreover

G(M) isunambiguousif and only if M is.
Proof N=0Q,S=q,and

PG:{p—>xq| px—>qge R} u{f—>¢lfekF].

Theorem 3.20 Any r.l.g. G = (N, X, R;, S can be

transformed in time O(|M|) into an equivalent finite
automaton M(G) = (Q, Z, R, q, F). Moreover M(G)

ISsunambiguous if and only if G is.

Proof o=[9,

Q={[Al|Ae N} U{[XA]| A—>Xx e R;, x#¢},

B, = {[Alx— [B]| A—>xB € R}
U{[AIX— [XA]| A—> x € R, X ¢},

F={[A]|A—>¢e e R} U{[XA]|A—>Xx e F;, X#¢}.

right linear grammar finite automaton
same succinctness and descriptive power

Theorem 3.21 Any language over X isregular if and

only if the language is generated by some right lin-
ear grammar over .
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Theorem 3.23 Any right-linear grammar G = (N, X,
P, $) can be transformed in time O(|M]) Into an
equivalent left-linear grammar G = (N, Z, R, $).
Moreover G isunambiguous if andonly if G is.
Proof. N = NU {$}
P={B>Ax{A—>xBeP}
U{S>AXA>XxeP}uU{S — ¢}
S=A=XA= ... XX A= X% ING.
A;—>xAeP I<i<kn A ;> X% €P.
Un

S—>A %P, A—>A xR I<iknS >eceB.
$:>A1_1>§]:>A1_2>§!_1>g1:> AKX D ALK
=5X... %= X...X InG.

S=HA ?
XAy A%,
%Py A1
X171 A%
X Ay =8 =2
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Theorem 3.22 Any left-linear grammar G = (N, X,
P, $) can be transformed in time O(|M[) into an
equivalent right-linear grammar G = (N, %, P, S).
Moreover G isunambiguous iff G is.
Proof. N = N U {S}
P={B—>xAlA—BxePR}

U{S > XA|A->xe R} U{$S—> ¢}

Theorem 3.24 Any language over an alphabet X is
regular if and only if it is the language generated by
some regular grammar with input string .
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Thereversal of aruler = o — B, r'R= oR - R,
The reversal of G, GR = (V, PR).
PR={Rr e P}

Lemma 3.25 Let G = (V, P) bearewriting system,
m="r..I € Ij,yl, Y, € V. Then
13 R inG,iff R 2 LRinGR
where ¥ =rfR... rR.
Proof.
"only If"
1) n=0, m = ¢, trivial.
i) n>0, letw=pr,r. = o, > o,
1 0B B anp (=71,)inG.
R (e, B)R (=ReRaR) in GR by IH.
R
R(D]_ROLR Tn) BR(DZROLR — (aQ)ZB)R — ,YZR_
Rr R
,YlR érn YZR'
"If" trivial, since
if'YlRl—L§ VzR inGR, (le)R - N == 5 ('YZR)R = Yo
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Theorem 3.26 Any rg G can be transformed in time
O(|G]) into aregular grammar GR such that
L(GR) = L(G)R.
Proof
GRisleft(right)-linear if Gis right(left)-linear.
|IGR| = |G| and GR can be congructed in time O(|G|).

Theorem 3.27 Family of regular grammar is effec-
tively closed under reversal.
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3.4 Deterministic Automaton

A finite automation M is nondeterministic, if
qw =1 gw, qw =2 gw, and ry # .

M is deterministic, if not nondeterministic.

Fact 3.28 A fais nondeterministic, if and only if
QX — ¢, ay — @, wherey isa prefix of x.

Fact 3.29 A deterministic fa is unambiguous, pro-
vided it has no e-transitions from final states.
no different accepting states.
deterministic < unambiguous

Let Rc Q. Then§(R) = {p|gx—>p e P,qe R}.
o Q%3 > R

Let 3 (a) = 3({a}) ={plax—>pe P,q e R}.

Let &' (R) = {p|gx=pinM, g e R}.

Let 3, (R) = {p| gx=pinM,ge R}.

Theorem 3.30 Any fa M can be transformed in time

O(2MI+logiMI+loglx]y jnto an equivalent deterministic
e-free normal-form fa M of size O(2MI+logl),
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Proof Assume M = (Q, X, P, g, F) Isnormal-form.
M = (0, %, P, , F) where
Q=22
g={q€Qlg>qinM}; or 3 ({q})
F={qeQ|qnF=a}, and
P={gqa—>q|qcQacZ g=25"(q)

where

5, () ={peQlga=>qinM,q € q} € Q.
g, = wg, in M, iff g, = §,(q,) where

8, (@) ={0 e Qlgw=ginM,q € q}.
L(M):{WEZ OABWB(A:{,(A:]EIA:}

={weX|§,(q) F=}

={weZ 05W£>q,qu}.

IM| = 3|P| = 3|Q||Z| = 3|21Q|:|z| = 3-2/Q1 + loglx]
. M| = O(2/Ql + loglxly

time complexity
O(IM|-|Q|) = O(2/Ql + logIQl + log|Z[y
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o = o, ifandonlyif g, &, Q.
q1£>ac]2 ifand onlyif g, § 8,5, o,
=880

ga ¢

Furthermorelfw ...,
8= 8.8,8.8.8,8,...58,8

g an ¢

= 55,885,885,

define s, = 8.8 .

g, = 8,(Q);
Q:={q}; P:=0
repeat
forg e Qandae = do
Q:=QuU 3 (q); (6,=83)
P:=PuU g-a—5(q);
od
until no more rule is added into P;

Fi={geQ|gnF=J}.
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Theorem 3.31

(Characterization of Regular Languages)

The following statements are logically equivalent for
all languages over alphabet .

(1) L isthe language denoted by some
regular expression over X.
(2) L isthe language denoted by some
unambiguous regular expression over .
(3) L isthe language accepted by some
finite automaton with input alphabet X.
(4) L isthe language accepted by some
deterministic e-free finite automaton with ....
(5) L isthe language generated by some
regular grammar with terminal alphabet .
(6) L isthe language generated by some
unambiguous right-linear grammar with ....
(7) L isthe language generated by some
unambiguous left-linear grammar with ....

Moreover, if D isa description of L belonging to any
of the above classes of regular language description,
then D can be transformed into a equivalent descrip-
tion belonging to any of the other classes.
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finite automaton < regular grammar
O(n) in succinctness

finite automaton = regular expression
O(2") in succinctness

finite automaton(regular grammar)
O(Nn) in succinctness

reduced fa(reduced rg)
O(n) in succinctness

normal form fa(normal formrq)
O(r?) in succinctness

e-freefa(e-freerg)
O(2") in succinctness
deterministic fa(deterministic rg)
O(2") in succinctness

regular expression
O(2") in succinctness
unambiguous(deterministic) re

o2
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3.5 Decision Problems on Regular Languages

Let D be a class of regular language description,
L be a regular language.

P_ (D). "Givenw, D € D; isw € L(D)?"

mem

membership problem for D.  rep(D)#w

P (L) "Givenw; isw e L?"

membership problemfor L. w

Poor(D): "Given Dy, D € D isL(Dy) < L(D,)?
containment problem for D.  rep(D,)#rep(D,)

P (D): "GivenD,, D, € D; isL(D,) ¢ L(D,)?"

ncon

noncontainment problem for D.  rep(D, )#rep(D,)

Peq(D): "Given D, D, € D; isL(D,) = L(D,)?"
equivalence problem for D. rep(Dy)#rep(D,)

Pneq(D): "Given D, D, € D; isL(D,) # L(D,)?"
inequivalence problem for D. rep(D,)#rep(D,)

3.6 Applicationsto Lexical Analysis
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