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3. Regular Languages

The family of regular languages
all finite language
closed under union, concatenation and closure.

Three equivalent descriptions on relular languages
regular expression
finite automata
regular grammar

Section 3.1
regular expression
relular language

Section 3.2
finite automata
regular expression ↔ finite automata

Section 3.3
regular grammar
finite automata ↔ regular grammar

Section 3.4
deterministic finite automata ⊆ finite automata
finite automata → deterministic finite automata

Section 3.5
some decision problems on regular languages

Section 3.6
lexical analysis



2/26/09 3. Regular Languages 2

Kwang-Moo Choe PL Labs., Dept of CSKAIST

3.1 Regular Expression
Language description

any finite means of specifying languages
finite number of finitely structured elements

writing down all the sentences finite language
rewriting system infinite language

L ⊆ V* languages over V
countably infinite {0, 1}*

2L ⊆ 2V* family of languages over V
uncountably infinite {0, 1}NN

no description in general

regular expression over an alphabet V
well-formed expression

arguments ∈ V ∪ {ε, ∅}
operators * closure

⋅ concatenation
∪ union
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Let E be a string over V ∪ {ε, ∅, *, ⋅, ∪, ), (}
(1) E is a regular primary over V, if

symbol in V ∪ {ε, ∅}; or
(E1) E1 is a regular expression over V.

(2) E is a regular factor over V, if
regular primary over V; or
E1

* E1 is a regular factor over V.
(3) E is a regular term over V, if

regular factor over V; or
E1⋅E2 E1 is a regular term

and E2 is a regular factors over V.
(4) E is a regular expression over V, if

regular term over V; or
E1∪E2 E1 is a regular expression

and E2 is a regular term over V.

〈P〉 → ∅ | ε | 〈V〉 | ( 〈E〉 )
〈F〉 → 〈P〉 | 〈F〉 *
〈T〉 → 〈F〉 | 〈T〉 ⋅ 〈F〉
〈E〉 → 〈T〉 | 〈E〉 ∪ 〈T〉

〈E〉 → ∅ | ε | 〈V〉 | ( 〈E〉 ) |
 〈E〉 ∪ 〈E〉 | 〈E〉 ⋅ 〈E〉 | 〈E〉 * 
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L(E) language denoted by a regular expression E.
(1a) L(∅) = ∅.
(1b) L(ε) = {ε}.
(1c) L(a) = {a} ∀a ∈ V.
(1d) L((E)) = L(E) ∀regular expression E over V
(2) L(E*) = (L(E))* ∀regular factor E over V
(3) L(E1⋅E2) = L(E1)⋅L(E2) ∀r.t. E1 and r.f. E2 over V
(4) L(E1∪E2) = L(E1)∪L(E2) ∀r.e. E1 and r.t. E2 V

regular language L over V
L = L(E) for some regular expression E over V

Fact 3.2 Any finite language is regular.

A language family FF is effectively closed under n-ary
operation f, if any n-tuple D1, … , Dn of language de-
scriptions, can be transformed into a description of
the language f(L(D1), … , L(Dn)).

A language family FF is  closed under f if
L1, … , Ln ∈ FF implies f(L1, … , Ln) ∈ FF.

closed vs effectively closed
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Lemma 3.3 Let E be a regular expression over V.
E can be transformed in time O(|E|) into a regular
expression that denotes L(E)*.
Any pair of regular expressions E1 and E2 can be
transformed in time O(|E1| + |E2|) into regular ex-
pressions that denotes L(E1)L(E2) and L(E1)∪L(E2).

(E)*, (E1)(E2), (E1) ∪ (E2).
Theorem 3.4 (Kleene) For any alphabet V, the fam-
ily of regular languages over V is the smallest family
of languages over V that contains all finite language
over V and is (effectively) closed under closure, con-
catenation, and finite union.

Two language descriptions D1 and D2 are equivalent,
if L(D1) = L(D2); inequivalent, otherwise.

Fact 3.5 For any regular expression there exists a
countably infinite number of equivalent regular ex-
pressions.
Proof. E, E ∪ E, E ∪ E ∪ E, … .

Given any class of language description DD, any de-
scription in DD usually has a countably infinite num-
ber of equivalent descriptions.

(renaming of symbols)
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A language description D is ambiguous if some sen-
tence in L(D) is described in two ways. A description
D is unambiguous if it is not ambiguous.

(1) ∅, ε, a and (E) are unambiguous, if
∀a ∈ V, E is unambiguous, respectively.

(2) E* is unambiguous if E is unambiguous and
∀x ∈ L(E*) ∃one n≥0, ∃one sequence (x1, … ,xn)

.∋. x = x1 … xn, 1 ≤ i ≤ n, xi ∈ L(E).
(3) E1E2 is unambiguous, if

(a) L(E1E2) = ∅; or
(b) if E1, E2 are unambiguous, and

∀x ∈ L(E1E2), ∃one (y, z) ∈ L(E1) × L(E2)
.∋. yz = x.

(3) E1 ∪ E2 is unambiguous, if
E1, E2 are unambiguous, L(E1) ∩ L(E2) = ∅.

ambiguity in language description
it may have two different meanings
enhanced description power

(0∪1)*(000∪111)(0∪1)*

unambiguity of language description
may reduce the descriptive power
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description power of unambiguous regular language
same as unrestricted one
No “inherently ambiguous” regular languages

Theorem 3.6 Any regular expression can be trans-
formed into unambiguous one.
Proof

regular expression ⇒ deterministic automaton
unambiguous automaton ⇒ unambiguous r.e.

deterministic automaton ⊆ unambiguous automaton

The descriptions in DD1 are at least as descriptive as
those in DD2, if

∀D2 ∈ DD2, ∃D1 ∈ DD1, L(D1) = L(D2).
(L(DD1) ⊇ L(DD2))

The description in DD1 are more descriptive as those in
DD2, if the descriptions in DD1 are at least as descriptive
as those in DD2 but

∃D1 ∈ DD1, ∃\ D2 ∈ DD2, L(D1) = L(D2).
(L(DD1) ⊃ L(DD2))

The descriptions in DD1 are as descriptive as those in
DD2, if the descriptions in DD1 are at least as descriptive
as those DD2 and vice versa.

(L(DD1) = L(DD2)).
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The descriptions in DD1 are at least as succinct as those
in DD2, if

∀D2 ∈ DD2, ∃D1 ∈ DD1, L(D1) = L(D2),
the size of D1 is at most linear in the size of D2.

The descriptions in DD1 are as succinct as(or equivalent
in succinctness) those in DD2, if … 

Let f be a function: natural numbers → positive reals
The descriptions in DD1 can be f(n) more succinct than
those in DD2, if ∃L1, … Ln, … each Ln has description in
DD1, size of Ln is O(n) but the equivalent description in
DD2 are of size at least f(n).

Proposition 3.7 There exist a constant c > 0 and an in-
finite sequence of regular languages L1, L2, … over {0,
1} such that each Ln is denoted by an ambiguous reg-
ular expression of length O(n) but any unambiguous
regular expression denoting Ln must have length at
least 2c⋅n.

(Ambiguous) regular expressions are
2n more succinct than

unambiguous regular expressions.
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3.2 Finite Automata
Let M = (V, P) be a rewriting system.

Q ∪ Σ = V, Q ∩ Σ = ∅, qs ∈ Q, and F ⊆ Q.
M = (Q, Σ, P, qs, F) is a finite automaton with

state alphabet Q,
input alphabet Σ,
initial state qs,
set of final states F,
rules P, if

qx → p q, p ∈ Q, x ∈ Σ*.
x transition(transition on x) from state q to p.

configuration(instantaneous description) of M
qw qw ∈ QΣ*.

qw initial for w ∈ Σ*, if q = qs.
qw accepting, if w = ε, q ∈ F.
qw error, if nonaccepting,

0≤∀k≤|w|, qk:w → p ∉ P.

computation(process) of M on input string w
derivation in M from initial configuration qsw

accepting computation,
if it end with accepting configuration

M accepts w, if it has an accepting computation.
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language accepted(recognized or described) by M
L(M) = {w∈ Σ*| qsw ⇒*  q in M, q ∈ F}.

transition graph
nodes Q
edges (q, p) qx → p ∈ P

labeled by x

A finite automaton is ambiguous,
if it accepts some sentence in two distinct ways
∃at least two accepting computation,

it is unambiguous, otherwise.

A state p is reachable from a state q upon reading w
qw ⇒*  p.

A state p is accessible upon reading w,
qsw ⇒*  p.

Fact 3.8 A finite automaton accepts w, iff some final
state is accessible upon reading w.

accessible state
A state that is accessible upon reading some string

inaccessible state, if it is not accessible.

A fa with no inaccessible state is called reduced.
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Lemma 3.9 The set of states reachable from a given
state of a finite automaton M can be computed in time
O(|M|).
Proof.

q1 reaches q2, if M has a transition from q1 to q2,
in O(|M|)

q1 reaches* q2, in O(|M|) by theorem 2.2

Theorem 3.10 Any finite automaton M(Q, Σ, P, qs, F)
can be transformed in time O(|M|) into an equivalent
reduced finite automaton M(Q’, Σ, P’, qs, F’), where
Q’ ⊆ Q, P’ ⊆ P, and F’ ⊆ F.

A state q is live, it some final state is reachable from
it. A state that is not live is dead.

Lemma 3.11 The set of live states of a finite automa-
ton M can be computed in time O(|M|).
Proof. (set of live states) (reaches−1)* F.

Fact 3.12 Let M be an unambiguous finite automa-
ton, Then for any accessible live state q1 and q2, and 
any input string x, there is at most one derivation of 
q2 from q1x in M.
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A finite automaton is normal-form, if
q1t → q2 ∈ P, t ∈ Σ ∪ {ε}.

A finite automaton is ε-free, if no ε-transition.

Normal-form finite automaton are equivalent in de-
scription power as well as succinctness to unrestrict-
ed finite automaton.

Theorem 3.13 Any fa M = (Q, Σ, P, qs, F) can be
transformed in time O(|M|) into an equivalent nor-
mal-form fa M’ = (Q’, Σ, P’, qs’, F’). Moreover M’
is ambiguous iff M is; and M’ is ε-free iff M is.
Proof.

Q’ = {[q] | q ∈ Q} ∪ {[qx] | qxy→p ∈ P, y  ∈ Σ+}
qs’ = [qs],
F’ = {[q] | q ∈ F}.
P’ = {[q] → [p]| q → p ∈ P}
∪ {[qx]a → [qxa]| a ∈ Σ, qxay→p ∈ P, y ∈ Σ+}
∪ {[qx]a → [p]| a ∈ Σ, qxa → p ∈ P}

i) q → p ∈ P
[qw] ⇒M’ [pw].

ii) qa1…an → p  ∈ P, n ≥ 1
[q]a1…anw ⇒M’ [qa1]a2…anw ⇒M’ … ⇒M’

[qa1…an-1]anw ⇒M’ [p]w in M’
∴ qx → p ∈ P, iff [q]xw ⇒* [p]w in M’.
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If qa1…an → p  ∈ P, n ≥ 1
[q]a1 → [qa1],
[qa1]a2 → [qa1a2],
 …,
[qa1…an-2]an-1 → [qa1…an-1],
[qa1…an-1]an → p ∈ P’

|P|: (n+2) ⇒ |P’|: 3n

Lemma 3.14 Any normal-form fa M = (Q, Σ, P, qs, F)
can be transformed in time O(|Q|⋅|M|) into an equiv-
alent ε-free fa M" = (Q, Σ, P", qs, F"). Moreover if M
is unambiguous, then so is M".
Proof

P" = {qa → p | ∃q" .∋. q ⇒*  q", q"a → p ∈ P}.
F" = {q| q ⇒*  q" ∈ F}

∴ qw ⇒*  p in M, iff qw ⇒*  q" and q" ⇒*  p in M.
M" may remove some ambiguities on sequences of ε-
moves.

q empty-trans p, iff q → p ∈ P of size O(|M|).
q empty-trans* p, iff q ⇒*  p ∈ P 

in time O(|Q|⋅|M|) Theorem 2.3.
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Theorem 3.15 Any fa M can be transformed in time
O(|M|2) into an equivalent ε-free normal-form fa.
Moreover if M is unambiguous, so is transformed au-
tomaton.

Nonlinear time bound in theorem 3.15
fa with ε-transition is O(|M|2) more succinct than

ε-free counterpart
L1, L2, … each Ln non-ε-free n.f. fa O(n)

ε-free normal-form fa at least 3n(n+1)/2.

finite automaton
⇓ O(n) in succinctness

reduced fa
⇓ O(n) in succinctness

normal form fa
⇓ O(n2) in succinctness

ε-free fa
e-free normal-form fa at least 3n(n+1)/2.

Exercises 3.7
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Theorem 3.16 Any regular expression E over Σ can
be transformed in time O(|E|) into an equivalent fi-
nite automaton M(E) with input alphabet Σ. More-
over M(E) is unambiguous iff E is.

(1a) M(∅)

(1b) M(ε)

(1c) M(a)

(1d) M((E))

ε

a

M(E)
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(2) M(E*)

(3) M(E1E2)

(4) M(E1∪E2)

M(E)ε
ε

ε

M(E1) M(E2)

M(E1)

M(E2)
ε ε
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Lmatch = {0n1n| n ≥ 0} is not regular.
Proof pumping
Assume Lmatch is regular.
ε-free and normal-form automaton M.
assume n = |Q| + 1

qs0
n1n  ⇒n  q1n ⇒n  qf ∈ F

Since n > |Q|, ∃i ≥ 0, k > 0, and ∃p ∈ Q.
qs0

n1n ⇒i   p0n−i1n ⇒k  p0n−i−k1n ⇒n−i−k q1n ⇒n  qf ∈ F..
∴ qs0

i0j⋅k0n−i−k1n (= 0n−k+j⋅k) ⇒*  qf ∈ F, ∀j ≥ 0.
but 0i0j⋅k0n−i−k1n ∉ Lmatch.

Theorem 3.17 Any fa M = (Q, Σ, P, qs, F) can be
transformed in time O(|Q|⋅|M|⋅4|Q|) into an equivalent
regular expression E(M) over Σ. Moreover M is am-
biguous iff M is.
Proof Let Q = {q1, …, qn}, for 1 ≤ i, j ≤ n, 0 ≤ k ≤ n
Eij

k a regular expression, x ∈ L(Eij
k)

qj is reachable(one or more) from qi upon reading x
without going through any state qm .∋. m > k.

L(Eij
k) = {x0 ∈ Σ*| qs0

x0 ⇒ qs1
x1 … ⇒ qsm

xm, m≥1,
qs0

 = qi, qsm
 = qj, xm = ε,  sl ≤ k, 1 ≤ ∀l ≤ m-1}.
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For k = 0, Eij
0 = x1 ∪ … ∪ xm where

qixl → qj ∈ P, for 1≤l≤m,
= ∅, otherwise.

For k > 0,
(1) Eij

k = (Eij
k−1)+, i=j=k.

(2) Eij
k = Eij

k−1⋅(Ejk
k−1)* i≠j=k.

(3) Eij
k = (Eik

k−1)*⋅Ekj
k−1 i=k≠j.

(4) Eij
k = Eij

k−1 ∪ Eik
k−1⋅(Ekk

k−1)*⋅Ekj
k−1 i≠k≠j.

E(M) = Esf1
n ∪ … ∪ Esfm

n ∪ Eε.
where qs is a initial state, {qf1

, … , qfm
} = F, and

Eε = ε, if qs ∈ F; Eε =∅, qs ∉ F.

qi

qk

qj

Eij
k

Eij
k-1

Eik
k-1

(Ekk
k-1)*

Ekj
k-1

qk-1q1 …
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Theorem 3.18 A language over Σ is regular, if and
only if it is the language accepted by some automa-
ton with input alphabet Σ.
fa ⇒ re exponential time bound
re ⇒ fa linear time bound

Infinite sequence of regular languages L1, L2, …
Ln ε-free normal form fa O(n2),

regular expression 2n.

fa can be exponentially more succinct than re.

finite automaton
⇓ O(n) in succinctness

reduced fa
⇓ O(n) in succinctness

normal form fa
⇓ O(n2) in succinctness

ε-free fa
⇓ O(2n) in succinctness

regular expression
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3.3 Regular Grammars
Let G = (V, P) be a rewriting system.

N ∪ Σ = V, N ∩ Σ = ∅, and S ∈ N.
G = (N, Σ, P, S) is a right linear grammar with

nonterminal alphabet N,
terminal alphabet Σ,
start symbol S, and
rules P, if

A → x, A → xB, A,B ∈ N, x ∈ Σ*.
G = (N, Σ, P, S) is a left linear grammar, if

A → x, A → Bx, A,B ∈ N, x ∈ Σ*.
A rewriting system is a regular grammar, if

it is either right linear or left linear.
language generated(described) by G

L(G) = LG(S) = {w ∈ Σ*| S ⇒*  w in G}.

sentential forms in regular grammar
S ⇒*  xA ⇒ xyB ⇒*  xyz,  A → yB ∈ P.

right linear single rightmost nonterminal
S ⇒*  Ax ⇒ Byx ⇒*  zyx,  A → By ∈ P.

left leaner single leftmost nonterminal
qsxyz ⇒*  qAyz ⇒ qBz ⇒*  qF, qAy → qB ∈ P, qF ∈ F.

G is ambiguous, if some sentence in L(G) has two
distinct derivations; otherwise unambiguous.
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Theorem 3.19 Any fa M = (Q, Σ, PM, qs, F) can be
transformed in time O(|M|) into an equivalent  right-
linear grammar G(M) = (N, Σ, PG, S). Moreover
G(M) is unambiguous if and only if M is.
Proof N = Q, S = qs, and

PG = {p → xq| px → q ∈ PM} ∪ {f → ε| f ∈ F}.

Theorem 3.20 Any r.l.g. G = (N, Σ, PG, S) can be
transformed in time O(|M|) into an equivalent finite
automaton M(G) = (Q, Σ, PM, qs, F). Moreover M(G)
is unambiguous if and only if G is.
Proof qs = [S],
Q = {[A]| A ∈ N} ∪ {[xA]| A → x ∈ PG, x ≠ ε},
PM = {[A]x → [B]| A → xB ∈ PG}

∪ {[A]x → [xA]| A → x ∈ PG, x ≠ ε},
F = {[A]| A → ε ∈ PG} ∪ {[xA]| A → x ∈ PG, x ≠ ε}.

right linear grammar finite automaton
same succinctness and descriptive power

Theorem 3.21 Any language over Σ is regular if and
only if the language is generated by some right lin-
ear grammar over Σ.
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Theorem 3.23 Any right-linear grammar Gr = (Nr, Σ,
Pr , Sr ) can be transformed in time O(|M|) into an
equivalent left-linear grammar Gl = (Nl, Σ, Pl , Sl ).
Moreover Gl is unambiguous if and only if Gr is.
Proof. Nl = N ∪ {Sl }
Pl  = {B → Ax| A → xB ∈ Pr }

∪ {Sl  → Ax| A → x ∈ Pr } ∪ {Sr  → ε}
Sr  = A0 ⇒ x1A1 ⇒ … ⇒ x1…xn-1An-1 ⇒ x1…xn  in Gr.

Ai-1 → xiAi ∈ Pr  1≤i<n, An-1 → xn ∈ Pr .
⇓⇑ 

Sl  → An-1xn∈Pl , Ai → Ai-1xi ∈ Pl  1≤i<n, Sr  → ε ∈ Pl .
Sl  ⇒ An-1xn ⇒ An-2xn-1xn ⇒ … ⇒ A1x2…xn ⇒ A0x1…xn
= Sr x1…xn⇒ x1…xn in Gl.

Sr  = A0
x1A1

x2A2

xn-1An-1

xn

Sl
An-1xn

An-2xn-1

A1x2
A0 =Sr x1

ε
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Theorem 3.22 Any left-linear grammar Gl = (Nl , Σ,
Pl , Sl ) can be transformed in time O(|M|) into an
equivalent  right-linear grammar Gr = (Nr , Σ, Pr , Sr ).
Moreover Gr is unambiguous iff Gl is.
Proof. Nr  = Nl  ∪ {Sr }
Pr  = {B → xA| A → Bx ∈ Pl }

∪ {Sr  → xA| A → x ∈ Pl } ∪ {Sl  → ε}

Theorem 3.24 Any language over an alphabet Σ is
regular if and only if it is the language generated by
some regular grammar with input string Σ.
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The reversal of a rule r = α → β, rR = αR → βR.
The reversal of G, GR = (V, PR).

PR = {rR| r ∈ P}

Lemma 3.25 Let G = (V, P) be a rewriting system,
π = r1 … rn ∈ P*, γ1, γ2 ∈ V*. Then

γ1 ⇒π  γ2 in G, iff γ1
R ⇒πR  γ2

R in GR,
where πR = r1

R… rn
R.

Proof.
"only if"
i) n=0, π = ε, trivial.
ii) n>0, let π = µrn, rn = ω1 → ω2.

γ1 ⇒µ  αω1β ⇒rn  αω2β (= γ2) in G.
γ1

R ⇒µR (αω1β)R (=βRω1
RαR) in GR by IH.

∴ βRω1
RαR ⇒rnR

 βRω2
RαR = (αω2β)R = γ2

R.

γ1
R ⇒µ

RrnR
 γ2

R.
"if" trivial, since

if γ1
R ⇒πR  γ2

R in GR, (γ1
R)R = γ1 ⇒πRR = ⇒π  (γ2

R)R = γ2.
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Theorem 3.26 Any rg G can be transformed in time
O(|G|) into a regular grammar GR such that

L(GR) = L(G)R.
Proof
GR is left(right)-linear if G is right(left)-linear.
|GR| = |G| and GR can be constructed in time O(|G|).

Theorem 3.27 Family of regular grammar is effec-
tively closed under reversal.
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3.4 Deterministic Automaton
A finite automation M is nondeterministic, if

qw ⇒r1 q1w1, qw ⇒r2 q2w2, and r1 ≠ r2.
M is deterministic, if not nondeterministic.

Fact 3.28 A fa is nondeterministic, if and only if
qx → q1, qy → q2, where y is a prefix of x.

Fact 3.29 A deterministic fa is unambiguous, pro-
vided it has no ε-transitions from final states.

no different accepting states.
deterministic ⊂ unambiguous

Let R ⊆ Q. Then δx(R) = {p| qx → p ∈ P, q ∈ R}.
δx: 2

Q × Σ* → 2Q.
Let δx(q) = δx({q}) = {p | qx → p∈ P, q ∈ R}.
Let δx

n(R) =  {p| qx ⇒n  p in M, q ∈ R}.
Let δx

*(R) =  {p| qx ⇒*  p in M, q ∈ R}.

Theorem 3.30 Any fa M can be transformed in time
O(2|M|+log|M|+log|Σ|) into an equivalent deterministic
ε-free normal-form fa M̂ of size O(2|M|+log|Σ|).
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Proof Assume M = (Q, Σ, P, qs, F) is normal-form.
M̂ = (Q̂, Σ, P̂, qs

ˆ , F̂) where
Q̂ = 2Q, 
qs
ˆ  = {q ∈ Q | qs ⇒

*  q in M}; or δε
*({qs})

F̂ = {q̂ ∈ Q̂ | q̂  ∩ F ≠ ∅}, and
P̂ = {q1

ˆ a → q2
ˆ  | q1

ˆ  ⊆ Q, a ∈ Σ, q2
ˆ  = δa

*(q1
ˆ )}

where
δa

*(q1
ˆ ) = {q2 ∈ Q | q1a ⇒*  q2 in M, q1 ∈ q1

ˆ } ∈ Q̂.

q1
ˆ  ⇒*  wq2

ˆ  in M̂, iff q2
ˆ  = δw

*(q1
ˆ ) where

 δw
*(q1

ˆ ) = {q2 ∈ Q | q1w ⇒*  q2 in M, q1 ∈ q1
ˆ }.

L(M̂) = {w ∈ Σ | qs
ˆ w ⇒*  q̂ , q̂  ∈ F̂}

= {w ∈ Σ | δw
*(qs

ˆ ) ∩ F ≠ ∅}
= {w ∈ Σ | qsw ⇒*  q, q ∈ F}.

|M̂| = 3⋅|P̂| = 3⋅|Q̂|⋅|Σ| = 3⋅|2|Q||⋅|Σ| = 3⋅2|Q| + log|Σ|.
∴ |M̂| = O(2|Q| + log|Σ|).

time complexity
O(|M̂|⋅|Q|) = O(2|Q| + log|Q| + log|Σ|)
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q1 ⇒*  q2, if and only if q1 δ*
ε q2.

q1 ⇒*  aq2, if and only if q1 δ*
εδaδ*

ε q2

δ
*
a = δ*

εδaδ*
ε.

Furthermore if w = a1…an.
δ*

w = δ*
εδa1

δ*
εδ

*
εδa2

δ*
ε…δ*

εδan
δ*

ε,
= δ*

εδa1
δ*

εδa2
…δ*

εδan
δ*

ε.

define δˆ a = δaδ*
ε.

δ*
w = δ*

εδ
ˆ

a1
δˆ a2

…δˆ an

= δ*
εδ

ˆ
w.

qs
ˆ  := δ*

ε(qs);
Q̂ := {qs

ˆ }; P̂ := ∅;
repeat

for q1
ˆ  ∈ Q̂ and a ∈ Σ do

Q̂ := Q̂ ∪  δˆ a(q1
ˆ ); (δˆ a = δaδ*

ε)

P̂ := P̂ ∪  q1
ˆ ⋅a → δˆ a(q1

ˆ );
od

until no more rule is added into P̂;
F̂ := {q̂ ∈ Q̂ | q̂  ∩ F ≠ ∅}.



2/26/09 3. Regular Languages 29

Kwang-Moo Choe PL Labs., Dept of CSKAIST

Theorem 3.31 
(Characterization of Regular Languages)
The following statements are logically equivalent for
all languages over alphabet Σ.

(1) L is the language denoted by some
regular expression over Σ.

(2) L is the language denoted by some
unambiguous regular expression over Σ.

(3) L is the language accepted by some
finite automaton with input alphabet Σ.

(4) L is the language accepted by some
deterministic ε-free finite automaton with ….

(5) L is the language generated by some
 regular grammar with terminal alphabet Σ.

(6) L is the language generated by some
unambiguous right-linear grammar with ….

(7) L is the language generated by some
unambiguous left-linear grammar with ….

Moreover, if D is a description of L belonging to any
of the above classes of regular language description,
then D can be transformed into a equivalent descrip-
tion belonging to any of the other classes.
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finite automaton ⇔ regular grammar
O(n) in succinctness

finite automaton ⇒ regular expression
O(2n) in succinctness

finite automaton(regular grammar)
O(n) in succinctness

reduced fa(reduced rg)
O(n) in succinctness

normal form fa(normal form rg)
O(n2) in succinctness

ε-free fa(ε-free rg)
O(2n) in succinctness

deterministic fa(deterministic rg)
O(2n) in succinctness

regular expression
O(2n) in succinctness

unambiguous(deterministic) re
O(22n

 )
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3.5 Decision Problems on Regular Languages
Let DD be a class of regular language description,

L be a regular language.

Pmem(DD): "Given w, D ∈ DD; is w ∈ L(D)?"
membership problem for DD. rep(D)#w

Pmem(L): "Given w; is w ∈ L?"
membership problem for L. w

Pcon(DD): "Given D1, D2 ∈ DD; is L(D1) ⊆ L(D2)?"
containment problem for DD. rep(D1)#rep(D2)

Pncon(DD): "Given D1, D2 ∈ DD; is L(D1) ⊄ L(D2)?"
noncontainment problem for DD. rep(D1)#rep(D2)

Peq(DD): "Given D1, D2 ∈ DD; is L(D1) = L(D2)?"
equivalence problem for DD. rep(D1)#rep(D2)

Pneq(DD): "Given D1, D2 ∈ DD; is L(D1) ≠ L(D2)?"
inequivalence problem for DD. rep(D1)#rep(D2)

3.6 Applications to Lexical Analysis


