10. Testing Grammars for Parsability

Study the complexity of the decision problems

$P_{C(k)}$: "Given a context-free grammar G, is G a C(k) grammar?"

P_C: "Given a context-free grammar G and a natural number k, is G a C(k) grammar?"

Here "*C*(*k*)" *stand for* "*strong LL*(*k*)", "*LALL*(*k*)", "*LL*(*k*)", "*SLR*(*k*)", "*LALR*(*k*)", "*LR*(*k*)", "*non-LL*(*k*)" *or* "*non-LR*(*k*)" *etc.*

P_{C(k)}: k is fixed.
 P_C: k is not fixed and problem parameter called uniform C(k) testing problems

Convention

G: a grammar (V, Σ, P, S) G': \$-augmented grammar of G $N = V \setminus \Sigma$ k: a natural number

3/8/18

Kwang-Moo Choe

PL Labs.,

10.1 Efficient Algorithms for LR(k) and SLR(k) Testing

A decision problem is solvable in deterministic polynomial time(P) if it has a deterministic solution that runs in time O(p(n))nondeterministic polynomial time(NP) if it has a partial solution that runs in time O(p(n))nondeterministic one level exponential time(NE) if it has a partial solution that runs in time $O(2^{p(n)})$, where p, q are polynomials.

Nondeterministic LR(k) machine for G is
state alphabet:
$$I_k \cup \{q_s\}, q_s \notin I_k$$

input alphabet: V
initial state: q_s
set of transition:
(i) $q_s \rightarrow [S \rightarrow \bullet \omega, \varepsilon]$
(ii) $[A \rightarrow \alpha \bullet X\beta, y]X \rightarrow [A \rightarrow \alpha X \bullet \beta, y], X \in V$, and
(iii) $[A \rightarrow \alpha \bullet B\beta, y] \rightarrow [B \rightarrow \bullet \omega, z],$
 $B \in N, z \in FIRST_k(\beta y)$
set of final states:
 $\{[A \rightarrow \omega \bullet, y] \mid A \rightarrow \omega \in P, y \in k: \Sigma^*\}$
 $\cup \{[A \rightarrow \alpha \bullet a\beta, y] \mid A \rightarrow \alpha a\beta \in P, a \in \Sigma, y \in k: \Sigma^*\}$

Here I_k : *the set of all k-items of* G

Kwang-Moo Choe

PL Labs.,

Theorem10.1 A state $[A \rightarrow \alpha \bullet \beta, y]$ in the nondeterministic LR(k) machine of G is accessible upon reading γ iff γ is a viable prefix of G and $[A \rightarrow \alpha \bullet \beta, y]$ is an LR(k)-valid item for γ . In other words, $\{[A \rightarrow \alpha \bullet \beta, y] \mid q_s \gamma \Rightarrow *[A \rightarrow \alpha \bullet \beta, y]\} = VALID_k(\gamma),$ $\forall \gamma \in V^*.$

The automaton obtained by making the nondeterministic LR(k) machine deterministic is exactly the canonical LR(k) machine.

Fact 10.2 Let *M* be the nondeterministic LR(k) machine for *G*. Then

- (1) *M* has at most $/k: \Sigma^* / \bullet /G / + 1 = O(/\Sigma/^k \bullet /G /)$ states.
- (2) *M* has at most / P / transitions of type (i).
- (3) *M* has at most $/k: \Sigma^* / \bullet /G / = O(/\Sigma/^k \bullet /G /)$ transitions of type(ii).
- (4) *M* has at most $/k: \Sigma^* /^2 \bullet |P| \bullet /G /$ = $O(|\Sigma|^{2k} \bullet |P| \bullet /G /)$ transitions of type (iii). (5) the size of *M* is $O(|G|^{2k+2})$ or $O(|\Sigma|^{2k} \bullet |P| \bullet /G /)$.

Reduction of the size of the automaton

by introducing additional states of the form [B,z], where B is in N, z is a string in $k: \sum^*$.

Any transition of type (iii) $[A \rightarrow \alpha \bullet B\beta, y] \rightarrow [B \rightarrow \bullet \omega, z]$ is split into two transitions : $[A \rightarrow \alpha \bullet B\beta, y] \rightarrow [B, z]$ $[B, z] \rightarrow [B \rightarrow \bullet \omega, z]$

 $M_{LR(k)}(G)$ (or $M_k(G)$) : the finite automaton state alphabet :

 $\{ [A \to \alpha \bullet \beta, y] \mid A \to \alpha \beta \in P, \ y \in k: \Sigma^* \}$ $\cup \{ [A, y] \mid A \in N, \ y \in k: \Sigma^* \}$ input alphabet : V
initial state : $[S, \varepsilon]$ set of transitions : $(a) [A, y] \to [A \to \omega, y]$ $(b) [A \to \alpha \bullet X\beta, y] X \to [A \to \alpha X \bullet \beta, y], \ for \ X \in V$ $(c) [A \to \alpha \bullet B\beta, y] \to [B, z], \ for \ B \in N, \ z \in FIRST_k(\beta y)$ final state: $\{ F_{reduce}(u) \mid u \in k: \Sigma^* \} \cup \{ F_{shift}(u) \mid u \in k: \Sigma^* \},$ where $F_{reduce}(u) = \{ [A \to \omega \bullet, u] \mid A \to \omega \in P \}$ $F_{reduce}(u) = \{ [A \to \omega \bullet, u] \mid A \to \omega \in P \}$

 $F_{shift}(u) = \{ [A \rightarrow \alpha \bullet a\beta, y] \mid A \rightarrow \alpha a\beta \in P, y \in k: \Sigma^*,$

 $a \in \Sigma, u \in FIRST_k(a\beta y)$

Fact 10.3 The following statements hold in the automaton $M_k(G)$.

(1) # of states is at most

2 /k:Σ*/•/G / = O(/Σ/^k•/G /)

(2) # of type (a) transitions is at most

/k:Σ*/•/P / = O(/Σ/^k•/P /)

(3) # of type (b) transitions is at most

/k:Σ*/•/G / = O(/Σ/^k•/G /)

(4) # of type (c) transitions is at most

/k:Σ/²•/G / = O(/Σ/^{2k}•/G /)

(5) the sizes of the final state sets is at most O(/Σ/^{2k}•/G /).

(6) the size of the automaton $M_k(G)$ is $O(/G/^{2k+1})$ or $O(/\Sigma/^{2k} \bullet /G/)$.

Theorem 10.4 A state $[A \rightarrow \alpha \bullet \beta, y]$ in $M_k(G)$ is accessible upon reading γ iff γ is a viable prefix of G and $[A \rightarrow \alpha \bullet \beta, y]$ is an LR(k)-valid item for γ . In other words, $\{[A \rightarrow \alpha \bullet \beta, y] \mid [S, \varepsilon] \gamma \Rightarrow *[A \rightarrow \alpha \bullet \beta, y]\} = VALID_k(\gamma), \forall \gamma \in V^*.$

Mutually accessible states : both reachable from the initial state upon reading the same string.

Distinct k-items $[A \rightarrow \alpha \bullet \beta, y]$ and $[B \rightarrow \omega \bullet, z]$ of G' exhibit an LR(k)-conflict if they exhibit, for k, a reduce-reduce conflict or a shift-reduce conflict. i.e. (1) $\beta = \varepsilon$ and y = z or (2) 1: β is a terminal and z is in FIRST_k(βy)

Theorem 10.5 Let G be a grammar in which $S \Rightarrow^+S$ is impossible. Then G is non-LR(k) iff the \$-augmented grammar G' has a pair of distinct k-items I and J that exhibit an LR(k)-conflict and are mutually accessible states in $M_k(G')$. In other words,

G is non-LR(k) iff there are distinct k-items $I = [A \rightarrow \alpha \bullet, y]$ and $J = [B \rightarrow \beta \bullet, y]$, or $I = [A \rightarrow \alpha \bullet a\beta, z]$ and $J = [B \rightarrow \omega \bullet, y]$ with $a \in \Sigma$, $y \in FIRST_k(a\beta z)$, s.t.

 $[S', \varepsilon]\gamma \Rightarrow *I \text{ and } [S', \varepsilon]\gamma \Rightarrow *J$ hold in $M_k(G')$ for some $\gamma \in \$V^*$.

Proof)

G is non-LR(k) iff for some string $\gamma \in V^*$, VALID_k(γ) contains a pair of distinct items *I*, *J* that exhibit an LR(k)-conflict. By Theorem 10.4, *I* and *J* belong to VALID_k(γ) iff they are states in M_k(G') accessible upon reading γ .

Kwang-Moo Choe

PL Labs.,

Algorithm for testing the LR(k) property.

- Step 1. Check whether or not $S \Rightarrow +S$ is possible in G. If yes, output "G is non-LR(k)" and halt.
- Step 2. Construct automaton $M_k(G')$ with collection of final state sets $F_{reduce}(u)$, $u \in k: \Sigma^*$, and
 - $F_{shift}(u), u \in k: \Sigma^*$ \$. Remove from each $F_{shift}(u)$

the items $[S' \rightarrow \$S\$, \varepsilon]$ and $[S' \rightarrow \$S•\$, \varepsilon]$

- Step 3. Determine in $M_k(G')$ the set A of pairs of mutually accessible states.
- Step 4. Check whether or not the set A contains a pair of distinct items I,J such that for some $u \in k: \Sigma^*$ $I, J \in F_{reduce}(u)$, or $I \in F_{reduce}(u)$, $J \in F_{shift}(u)$. If yes, output "G is non-LR(k)" and halt. otherwise output "G is LR(k)" and halt.

transition of type (c) $[A \rightarrow \alpha \bullet B\beta, y] \rightarrow [B, z]$, for $B \in N$, $z \in FIRST_k(\beta y)$ Given item $[A \rightarrow \alpha \bullet B\beta, y]$, determine $z \in FIRST_k(\beta y)$

$$F_{shift}(u) = \{ [A \rightarrow \alpha \bullet a\beta, y] \mid A \rightarrow \alpha a\beta \in P, y \in k: \Sigma^*, a \in \Sigma, u \in FIRST_k(a\beta y) \}$$

for each $u \in k: \Sigma^*$, determine all item $[A \rightarrow \alpha \bullet a\beta, y]$ in which $u \in FIRST_k(a\beta y)$. **Lemma 10.6** Any grammar G can be transformed in time O(|G|) into a grammar $G_{pre}=(V_{pre}, \Sigma, P_{pre}, S_{pre})$ s.t. the following statements hold.

(1)
$$G_{pre}$$
 is in canonical two-form, so that the rules in P_{pre} are of the forms $A \rightarrow BC, A \rightarrow B, A \rightarrow a$.

(2) $V \subseteq V_{pre}$, for each $A \in V$ generates in G_{pre} exactly the nonempty terminal strings derived by A in G., i.e.

 $L_{Gpre}(A) = L_G(A) \setminus \{\varepsilon\}, \ \forall A \in V \setminus \Sigma.$

(3) for each $A \in V$, $\exists A_{pre} \in V_{pre} \setminus \Sigma$ that generates in G_{pre} exactly the nonempty prefixes of terminal strings derived by A in G, i.e. $L_{Gpre}(A_{pre}) = \{x \in \Sigma^* | x \neq \varepsilon, xy \in L_G(A)\}.$

(4) for each $A \rightarrow \alpha \beta \in P$, $\alpha \neq \varepsilon$, $\beta \neq \varepsilon$, $\exists [\beta] \in V_{pre} \setminus V$ s.t. $L_{Gpre}([\beta]) = L_G([\beta]) \setminus \{\varepsilon\}.$

(5) for each
$$A \rightarrow \alpha \beta \in P, \alpha \neq \varepsilon, \beta \neq \varepsilon, \exists [\beta]_{pre} \in V_{pre} \setminus V$$

s.t. $L_{Gpre}([\beta]_{pre}) = \{x \in \Sigma^* | x \neq \varepsilon, xy \in L_G(\beta)\}$

Proof)

Transform G into a canonical two-form grammar $G_1 = (V_1, \Sigma, P_1, S)$, where $V \subseteq V_1, L_{G1}(A) = L_G(A) \setminus \{\varepsilon\}$, For each rule $A \rightarrow \alpha\beta$ and nonempty strings α and β there is a nonterminal $[\beta] \in V_1 \setminus V$ such that $L_{G1}([\beta]) = L_G([\beta]) \setminus \{\varepsilon\}$

$$\begin{split} G_{pre} &= (V_{pre}, T, P_{pre}, S_{pre}) \\ V_{pre} &= V_1 \cup \{A_{pre} \mid A \text{ is a nonterminal in } V_1\} \\ P_{pre} &= P_1 \cup \{A_{pre} \rightarrow A \mid A \text{ is a nonterminal in } V_1\} \\ &\cup \{A_{pre} \rightarrow BC_{pre} \mid A \rightarrow BC \text{ is a rule in } P_1\} \\ &\cup \{A_{pre} \rightarrow B_{pre} \mid For \text{ some } C, A \rightarrow BC \in P_1, \\ &C \text{ drives some terminal string} \} \\ &\cup \{A_{pre} \rightarrow B_{pre} \mid A \rightarrow B \text{ is a rule in } P_1\} \end{split}$$

 G_{pre} satisfies (1) since G_1 does. $L_G(A) = L_{Gpre}(A)$ since $P_{pre} \setminus P_1$ contains no rules for the nonterminal in V_1 .

 A_{pre} generates nonempty prefixes of L(A).

Lemma 10.7 Given grammar G, k>0, $u = a_1...a_k \in \Sigma^*$, one can compute in space $O(k^2 \cdot |G|)$ and in time $O(k^3 \cdot |G|)$, $k \times k$ matrix N_u containing sets of symbols of the form $[\beta]$ and $[\beta]_{pre}$ s.t.

$$\begin{split} N_u(i,j) &= \{ [\beta] / A \rightarrow \alpha \beta \in P, \ \alpha, \beta \neq \varepsilon, \ \beta \Rightarrow^* a_i \dots a_j \} \cup \\ \{ [\beta]_{pre} / A \rightarrow \alpha \beta \in P, \ \alpha, \beta \neq \varepsilon, \ \beta \Rightarrow^* a_i \dots a_j y, \ y \in \Sigma^* \} \\ for \ 1 \leq i \leq j \leq k. \end{split}$$

Proof)

Transformed grammar $G_{pre} = (V_{pre}, \Sigma, P_{pre}, S_{pre})$. Apply general CFG recognition algorithm

 $\hat{N}_{u}(i,j) = \{A \in V_{pre} \setminus \Sigma \mid A \Longrightarrow^{*} a_{i}...a_{j} \text{ in } G_{pre} \}$ for $1 \le i \le j \le k$.

 $\hat{N}_{u}(i,j) \text{ contains } [\beta] \text{ iff } [\beta] \Rightarrow^{*}a_{i}...a_{j} \text{ in } G_{pre}$ $\text{iff } \beta \in V^{+}, A \rightarrow \alpha \beta \in P, \ \alpha \neq \varepsilon, \ \beta \Rightarrow^{*}a_{i}...a_{j} \text{ in } G.$ $\hat{N}_{u}(i,j) \text{ contains } [\beta]_{pre} \text{ iff } [\beta]_{pre} \Rightarrow^{*}a_{i}...a_{j} \text{ y in } G_{pre}$ $\text{iff } \beta \in V^{+}, A \rightarrow \alpha \beta \in P, \ \alpha \neq \varepsilon, \ \beta \Rightarrow^{*}a_{i}...a_{j} \text{ y in } G.$

Remove from \hat{N}_u all symbol that are not of forms [β] or $[\beta]_{pre}$.

Lemma 10.8 The automaton $M_k(G)$ can be constructed in time $O((k+1)^3 \bullet \Sigma/\Sigma^{2k} \bullet/G/)$. **Proof**) State set, type (a) and (b) transitions, $F_{reduce}(u)$, $u \in k: \Sigma^*$ take $O(\Sigma/k/G/)$. type (c) tansitions $([A \rightarrow \alpha \bullet B\beta, y] \rightarrow [B, u], u \in FIRST_{k}(\beta y))$ case k = 0For any 0-item $[A \rightarrow \alpha \bullet B\beta, \varepsilon]$, add $[A \rightarrow \alpha \bullet B\beta, \varepsilon] \rightarrow [B, \varepsilon],$ whenever β drives some terminal string case k > 0For each string $u=a_1...a_l \in k: \Sigma^*$ determine $[A \rightarrow \alpha \bullet B\beta, y] \rightarrow [B, u].$ If β is nullable, add $[A \rightarrow \alpha \bullet B\beta, u] \rightarrow [B, u]$. When l > 0, compute N_{μ} For j=1,...,l and for $[\beta] \in N_u(1,j)$, add $[A \rightarrow \alpha \bullet B\beta, a_{j+1} \dots a_l y] \rightarrow [B, u],$ where $a_{j+1} \dots a_l y \in k: \Sigma^*$ and k: uy = u.Observe that β derives $a_1...a_i$. For all symbols $[\beta]_{pre} \in N_u(1,l)$, add $[A \rightarrow \alpha \bullet B\beta, y] \rightarrow [B, u],$ where $y \in k: \Sigma^*$ s.t. $y = \varepsilon$ whenever l < k. Observe that u is a prefix of some terminal string de*rived by* β .

$$\begin{split} F_{shiff}(u) \\ (\{[A \to \alpha \bullet a\beta, y] \mid A \to \alpha \bullet a\beta \in P, \ y \in k: \Sigma^*, \\ a \in \Sigma, \ u \in FIRST_k(a\beta y)\}) \\ case \ k = 0 \\ Add \ all \ [A \to \alpha \bullet B\beta, \varepsilon], where \ a \in \Sigma, \beta \ drives \ some \ terminal \ string \\ case \ k > 0 \\ For \ each \ string \ u = a_1 ... a_l \in k: \Sigma^* \\ if \ \beta \ is \ nullable \ and \ l > 0 \ add \ [A \to \alpha \bullet a_1\beta, \ a_2 ... a_ly], \\ where \ a_2 ... a_l y \in k: \Sigma^* \ and \ k: uy = u. \\ if \ l = k = 1 \ and \ \beta \ drives \ some \ terminal \ string \ add \\ \ [A \to \alpha \bullet a\beta, y], \ where \ y \in k: \Sigma^*. \\ When \ l > 0, \ compute \ N_u. \\ For \ j = 2, ..., l \ and \ for \ [\beta] \in N_u(2, j), \ add \\ \ [A \to \alpha \bullet a_1\beta, \ a_{j+1} ... a_ly], \\ where \ a_{j+1} ... a_l y \in k: \Sigma^* \ and \ k: uy = u. \\ For \ all \ symbols \ [\beta]_{pre} \in N_u(2, l), \ add \\ \ [A \to \alpha \bullet a_1\beta, y], \\ where \ y \in k: \Sigma^* \ s.t. \ y = \varepsilon \ whenever \ l < k. \end{split}$$

Time complexity $O(|k:\Sigma^*| \bullet k^3 \bullet / G / + |\Sigma|^{2k} \bullet / G /)$ $|k:\Sigma^*| \bullet k^3 \bullet / G /:$ computation of N_w , $u \in \Sigma^*$. $|\Sigma|^{2k} \bullet / G /:$ generation of states and transition

Kwang-Moo Choe

PL Labs.,

Determines the pairs of mutually accessible states

Assume M is a finite automaton with state alphabet Q, input alphabet V, and set of transitions P.

 $Q \times Q$ relation: (p,q) mutually-goes-to (p',q'), if for some $X \in V$ P contains the transitions $pX \rightarrow p'$ and $qX \rightarrow q'$. (p,q) by-left-passes-empty (p',q), if P contains the transition $p \rightarrow p'$. (p,q) by-right-passes-empty (p,q'), if P contains the transition $q \rightarrow q'$.

mutually-accesses = (*mutually-goes-to* \cup *by-left-passes-empty* \cup *by-right-passes-empty*)*

Lemma 10.9 States p and q are mutually accessible iff (q_s, q_s) mutually-accesses (p,q), where q_s is initial state.

Lemma 10.10 For any f.a. M, the set of pairs of mutually accessible states can be determined in time $O(|M|^2)$.

10. Testing Grammars for Parsability 14 Theorem 10.11 (LR(k) test using $M_k(G')$) Grammar. G can be tested for the LR(k) property in deterministic time $O((k+1)^3 \cdot |G|^{4k+2})$. step 1: O(|G|)step 2: $O((k+1)^3 \cdot |\Sigma|^{2k} \cdot |G|$ step 3: $O(|\Sigma|^{4k} \cdot |G|^2)$ step 4: linear time $P_{LR(k)}$ is solvable in deterministic polynomial time $O(n^{4k+2})$ n, size of a problem instance, is proportional to |G|in $P_{LR(k)}$.

n=/G/+k when k is expressed in unary. For k in unary the uniform (non)-LR(k) testing problem is solvable in deterministic one-level exponential time($O(2^{(4n + 2) \log n}))$ $(n = \log_2 2^n)$

 $n=/G/+\log k$ when k is expressed in binary. For k in binary the uniform (non)-LR(k) testing problem is solvable in deterministic two-level exponential time($O(2^{(4 \ 2^n + 2) \log n}))$

Kwang-Moo Choe

PL Labs.,

10. Testing Grammars for Parsability 15 A more sophisticated method for LR(k) testing

Key idea : representation of the automaton $M_k(G')$ as a collection of several very small automata. One automaton for each specific string $u \in k: \Sigma^*$ \$. denoted by $M_{\mu}(G')$

Let $u \in k: \Sigma^*$. Then k-item $[A \rightarrow \alpha \bullet \beta, y]$ is a **u-item**, if y is a suffix of u.

FIRST_u(β) = { $y \in \Sigma^* \mid \beta \Rightarrow *yz, xy = u$ for some x,z} denote the set of all suffixes of u that are prefixes of some terminal string derived by β

$$\begin{split} M_{LR(u)}(G) &(or \ M_u(G), \ for \ short) :\\ state \ alphabet \\ &\{[A \to \alpha \bullet \beta, y] \mid A \to \alpha \beta \in P, \ y \ is \ a \ suffix \ of \ u\} \\ &\cup \{[A, y] \mid A \in N, \ y \ is \ a \ suffix \ of \ u\} \\ input \ alphabet: \ V\\ initial \ state: \ [S, \varepsilon] \\ set \ of \ transitions :\\ &(a) \ [A, y] \to [A \to \bullet \omega, y] \\ &(b) \ [A \to \alpha \bullet X\beta, y]X \to [A \to \alpha X \bullet \beta, y], \ for \ X \in V \\ &(c) \ [[A \to \alpha \bullet B\beta, y] \to [B, z], \\ &for \ B \in N, z \in FIRST_u(\beta y) \end{split}$$

set of final states : $F_{reduce} \cup F_{shift}$, where $F_{reduce} = \{[A \rightarrow \omega \bullet, u] | A \rightarrow \omega \text{ is a rule of } G\}$ $F_{shift} = \{[A \rightarrow \alpha \bullet a\beta, y] | A \rightarrow \alpha a\beta \text{ is a rule of } G,$ $a \text{ is a terminal and } u \in FIRST_u(a\beta y)\}$

Fact 10.12 Let $u \in \Sigma^*$, the following statements hold in the automaton $M_u(G)$.

- (1) the number of states is at most $2 \cdot (/u/+1) \cdot /G/$
- (2) the number of type (a) transitions is at most $(/u/+1) \bullet /P /.$
- (3) the number of type (b) transitions is at most $(/u/+1) \bullet /G /.$
- (4) the number of type (c) transitions is at most $(/u/+1)^2 \cdot /G/.$

(5) the size of the automaton is $O((/u/+1)^2 \bullet /G /)$.

An item $[A \rightarrow \alpha \bullet \beta, y]$ of G is LR(u)-valid string $\gamma \in V^*$ if $S \underset{rm}{\Rightarrow}^* \delta Az \underset{rm}{\Rightarrow} \delta \alpha \beta z = \gamma \beta z$ and $y \in FIRST_u(z)$ hold in G for some strings $\delta \in V^*$ and $z \in \Sigma^*$

Fact 10.13 If $[A \rightarrow \alpha \bullet \beta, y]$ is an LR(u)-valid item for γ then γ is a viable prefix, $[A \rightarrow \alpha \bullet \beta, y]$ is u-item, α is a suffix of γ and $y \in FOLLOW_{/\nu/}(\gamma\beta)$.

Conversely, if γ is a viable prefix, then some item is LR(u)-valid item for γ .

Kwang-Moo Choe

PL Labs.,

 $VALID_{LR(u)}(\gamma)$ (or $VALID_u(\gamma)$, for short): the set of all LR(u)-valid items for γ

For all
$$n \ge 0$$
,
 $VALID_{u,n}(\gamma)$: set of items $[A \rightarrow \alpha \bullet \beta, y]$ that satisfy
 $S \Longrightarrow_{rm}^{n} \delta Az \Longrightarrow_{rm} \delta \alpha \beta z = \gamma \beta z$ and $y \in FIRST_{u}(z)$
for some $\delta \in V^*$ and $z \in \Sigma^*$

Lemma 10.14 If in grammar G

$$[A \rightarrow \alpha \bullet B\beta, y] \in VALID_{u,n}(\gamma) \text{ and } \beta \Rightarrow^m v \in \Sigma^*,$$

then $\forall B \rightarrow \omega \in P, z \in FIRST_u(vy)$
 $[B \rightarrow \bullet \omega, z] \in VALID_{u,n+m+1}(\gamma)$.

Lemma 10.15 If in grammar G

$$[B \rightarrow \bullet \omega, z] \in VALID_{u,n}(\gamma), n > 0,$$

then $\exists A \rightarrow \alpha B\beta \in P, m < n,$
 $[A \rightarrow \alpha \bullet B\beta, y] \in VALID_{u,m}(\gamma), \beta \Longrightarrow_{rm}^{n-m-1} v,$
and $z \in FIRST_u(vy).$

Fact 10.16 If $[A \rightarrow \alpha \bullet B\beta, y] \in VALID_{u,n}(\gamma)$ then $\gamma \omega$ is a viable prefix and $[A \rightarrow \alpha B \bullet \beta, y] \in VALID_{u,n}(\gamma \omega)$. Conversely, if $[A \rightarrow \alpha B \bullet \beta, y] \in VALID_{u,n}(\delta)$ then there is a viable prefix γ s.t. $\delta = \gamma \omega$ and $[A \rightarrow \alpha \bullet B \beta, y] \in VALID_{u,n}(\gamma)$.

Theorem 10.17 A state $[A \rightarrow \alpha \bullet \beta, y]$ in $M_u(G)$ is accessible upon reading γ iff $[A \rightarrow \alpha \bullet \beta, y]$ is an LR(u)-valid item for γ . In other words, VALID_u(γ)={ $[A \rightarrow \alpha \bullet \beta, y] | [S, \varepsilon] \gamma \Rightarrow *[A \rightarrow \alpha \bullet \beta, y]$ in $M_u(G)$ }.

Proof)

Only if) By induction on m, the length of computation

 $[S, \varepsilon]\gamma \Rightarrow^{m} [A \to \alpha \bullet \beta, y] \text{ in } M_{u}(G)$ base) m=1, we have $\gamma = \varepsilon$, $[A \to \alpha \bullet \beta, y] = [S, \bullet \beta, \varepsilon]$ $[S, \bullet \beta, \varepsilon] \in VALID_{u}(\varepsilon)$

induction) If m > 1, the computation is either

i)
$$[S, \varepsilon]\gamma = [S, \varepsilon]\gamma'X \Rightarrow^{m-1} [A \to \alpha' \bullet X\beta, y]X$$

 $\Rightarrow [A \to \alpha'X \bullet \beta, y] = [A \to \alpha \bullet \beta, y], or$
ii) $[S, \varepsilon]\gamma \Rightarrow^{m-2} [A' \to \alpha' \bullet A\beta', y'] \Rightarrow [A, y]$
 $\Rightarrow [A \to \bullet \beta, y] = [A \to \alpha \bullet \beta, y], where$
 $y \in FIRST_u(\beta'y').$

:. By i.h., Fact 10.16(i), and Lemma 10.14(ii), *it holds.*

If) By induction on
$$n+|\gamma|$$
, where
 $[A \rightarrow \alpha \bullet \beta, y] \in VALID_{u,n}(\gamma).$
base) $n+|\gamma|=0$, we have $[A \rightarrow \alpha \bullet \beta, y]=[S \rightarrow \bullet \beta, \varepsilon], \gamma=\varepsilon.$
 $[S, \bullet \beta, \varepsilon]$ is the state to which $M_u(G)$ has ε -transition
from $[S, \varepsilon]$

induction) If $n+/\gamma/>0$, i) $[A \to \alpha \bullet \beta, y] = [A \to \alpha' X \bullet \beta, y] \in VALID_{u,n}(\gamma)$, ii) $[A \to \alpha \bullet \beta, y] = [A \to \bullet \beta, y] \in VALID_{u,n}(\gamma)$, where n>0. By i.h., Fact 10.16(i), and Lemma 10.15(ii), it holds

Let $u \in k: \Sigma^*$. Then distinct items $[A \to \alpha \cdot \beta, y]$ and $[B \to \omega \cdot, z]$ exhibit an LR(u)-conflict if either (1) $\beta = \varepsilon$ and y = z = u, or (2) $1: \beta \in \Sigma$, y is suffix of u, and $z = u \in FIRST_u(\beta y)$.

Fact 10.18 Distinct items $[A \rightarrow \alpha \bullet \beta, y]$ and $[B \rightarrow \omega \bullet, z]$ exhibit an LR(u)-conflict iff

(1) the items u-items,
(2) they exhibit an LR(/u/)-conflict, and
(3) z= u.

Theorem 10.19 Let G is impossible $S \Rightarrow^+S$.

Then G is non-LR(k) iff $\exists u \in k: \Sigma^*$, the \$-augmented grammar G' has a pair of distinct u-items I and J that exhibit an LR(u)-conflict and are mutually accessible states in $M_u(G')$.

Kwang-Moo Choe

PL Labs.,

Proof) **Only if**) Assume that G (also G') is non-LR(k). $\exists \gamma \in \$V^* [A \rightarrow \alpha \bullet \beta, y] \text{ and } [B \rightarrow \omega \bullet, u] \text{ in } VALID_k(\gamma)$ that exhibit LR(k)-conflict. $S' \Longrightarrow_{rm}^* \delta_l A y_l \Longrightarrow_{rm} \delta_l \alpha \beta y_l = \gamma \beta y_l, \ k: y_l = y,$ $S' \Longrightarrow^* \delta_2 A y_2 \Longrightarrow \delta_2 \omega y_2 = \gamma y_2, \ k: y_2 = u \in FIRST_k(\beta y)$ Then $u \in k: \Sigma^*$, $u \in FIRST_u(y_2)$ $\therefore [B \rightarrow \omega \bullet, u] \in VALID_{u}(\gamma)$ $u \in FIRST_k(\beta y)$ implies that y has a prefix y' s.t. y' is a suffix of u, $u \in FIRST_k(\beta y')$. $u \in FIRST_k(\beta y)$ also implies $y' \in FIRST_k(\beta y_1)$, $u \in FIRST_u(\beta y')$. Hence $[A \rightarrow \alpha \bullet \beta, y]$ and $[B \rightarrow \omega \bullet, u]$ exhibit an LR(u)conflict. They accessible upon reading γ . If) Assume $u \in k: \Sigma^*$ and $[A \to \alpha \bullet \beta, y]$ and $[B \to \omega \bullet, u]$ exhibit an LR(u)-conflict. They accessible upon reading γ . Then $u \in FIRST_u(\beta y)$, $[A \rightarrow \alpha \bullet \beta, y]$, $[B \rightarrow \omega \bullet, u]$ in $VALID_{\mu}(\gamma)$.

 $S' \underset{rm}{\Rightarrow} \delta_{l}Ay_{l} \underset{rm}{\Rightarrow} \delta_{l}\alpha\beta y_{l} = \gamma\beta y_{l}, y \in FIRST_{u}(y_{l}),$

 $S' \Longrightarrow_{rm}^{*} \delta_{2}By_{2} \Longrightarrow_{rm}^{*} \delta_{2}\omega y_{2} = \gamma y_{2}, \ u \in FIRST_{u}(y_{2}).$ Here $[A \rightarrow \alpha \bullet \beta, k: y_{1}], \ [B \rightarrow \omega \bullet \ , k: y_{2}] \in VALID_{k}(\gamma).$ $u \in FIRST_{u}(y_{2}) \ implies \ u = /u/: y_{2}.$ But $u = k: y_{2}.$ $u \in FIRST_{u}(\beta y) \ and \ y \in FIRST_{u}(y_{1}) \ implies$ $u \in FIRST_{u}(\beta y_{1}).$ So $u \in FIRST_{k}(\beta y_{1}).$

Kwang-Moo Choe

PL Labs.,

Lemma 10.20 The automaton $M_u(G)$ can be constructed in simultaneously in space $O((/u/+1)^2 \cdot |G|)$, in time $O((/u/+1)^3 \cdot |G|)$.

Theorem 10.21 Grammar G can be tested for the LR(k) property simultaneously in deterministic space $O((k+1)^2 \cdot |G|^2)$ and in time $O((k+1)^3 \cdot |\Sigma|^k \cdot |G|^2)$.

Corollary 10.22 For any fixed k, the LR(k) testing problem $P_{LR(k)}$ is solvable simultaneously in deterministic space $O(n^2)$ and in deterministic time $O(n^{k+2})$.

Corollary 10.23 The uniform LR(k) testing problem P_{LR} is solvable simultaneously in deterministic polynomial space and in deterministic one-level exponential time when k is expressed in unary, and simultaneously in deterministic two-level exponential time when k is expressed in binary.

Nondeterministic algorithm for Non-LR(k) testing

- Step 1. Check whether or not $S \Rightarrow^+ S$ is possible in G. If yes, output "G is non-LR(k)" and halt.
- Step 2. Guess a string $u \in k: \Sigma^*$ \$.
- Step 3. Construct $M_u(G')$. Remove from F_{shift} the items $[S' \rightarrow \$S\$, \varepsilon]$ and $[S' \rightarrow \$S\$, \varepsilon]$.
- Step 4. Determine in $M_u(G')$ the set A of pairs of mutually accessible states.
- Step5. Check whether or not the set A contains a pair of distinct items I, J s.t. $(I, J) \in F_{reduce} \times F_{reduce}$, $(I, J) \in F_{shift} \times F_{reduce}$. If yes, output "G is non-LR(k)" and halt. Otherwise, halt.

Theorem 10.24 Grammar G can be tested for the non-LR(k) property simultaneously in nondeterministic space O(k+|G|) and in time $O((k+1)^2 \cdot |G|^2)$.

Corollary 10.25 For any fixed k, the non-LR(k) testing problem $P_{non-LR(k)}$ is solvable simultaneously in nondeterministic space O(n) and in nondeterministic time $O(n^2)$.

Corollary 10.26 The uniform non-LR(k) testing prob-

Kwang-Moo Choe

PL Labs.,

lem P_{non-LR} is solvable simultaneously in nondeterministic polynomial time when k is expressed in unary, and in nondeterministic one-level exponential time when k is expressed in binary.

Theorem 10.27 Let G is impossible $S \Rightarrow^+S$.

Then G is non-SLR(k) iff $\exists u \in k: \Sigma^*$, G' has a pair of distinct u-items $[A \rightarrow \alpha \bullet \beta, y]$ and $[B \rightarrow \omega \bullet , u]$ that exhibit an LR(u)-conflict and are mutually accessible states in $M_u(G')$ and where $[A \rightarrow \alpha \bullet \beta]$ and $[B \rightarrow \omega \bullet]$ are mutually accessible states in $M_{\varepsilon}(G')$.

Theorem 10.28 Grammar G can be tested for the SLR(k) property simultaneously in deterministic space $O((k+1)^2 \cdot |G| + |G|^2)$ and in time $O((k+1)^3 \cdot |\Sigma|^k \cdot |G|^2)$.

Corollary 10.29 For any fixed k, the SLR(k) testing problem $P_{SLR(k)}$ is solvable simultaneously in deterministic space $O(n^2)$ and in deterministic time $O(n^{k+2})$.

Theorem 10.30 Grammar G can be tested for the non-SLR(k) property simultaneously in nondeterministic space O(k+|G|) and in time $O((k+1)\bullet|G|+|G|^2)$.

Kwang-Moo Choe

PL Labs.,

10.2 Efficient Algorithms for LL(k) and SLL(k) testing The LR-transformed grammar for G is the grammar $G_{LR} = (V \cup P, \Sigma, P_{LR}, S)$, where $P_{LR} = \{A \rightarrow (A, \omega)\omega \mid A \rightarrow \omega \in P\}$ $\cup \{((A, \omega) \rightarrow \varepsilon \mid A \rightarrow \omega \in P\}.$

The size of G_{LR} is at most $3 \cdot |G|$

Lemma 10.31 Let G_{LR} be the LR-transformed grammar for G, and h a homomorphism from the rule strings of G_{LR} to the rule strings of G defined by:

 $h(A \rightarrow (A, \omega)\omega) = \varepsilon,$

 $h((A, \omega) \rightarrow \varepsilon) = A \rightarrow \omega.$

If X is a symbol in V, ϕ a string in V*, and π a rule string in P* such that

 $X \xrightarrow{\pi} \phi$ in G,

then G_{LR} has a unique rule string π ' such that

 $X \xrightarrow{\pi} \phi$ in G_{LR} and $h(\pi') = \pi$.

Conversely, if X is a symbol in V, ϕ a string, and π ' a rule string of G_{LR} such that

$$X \xrightarrow{\pi}{lm} \phi \in V^* \text{ in } G_{LR} \text{ , then}$$
$$X \xrightarrow{h(\pi)}{lm} \phi \text{ in } G.$$

Kwang-Moo Choe

PL Labs.,

Moreover, if X is a symbol in V, x a string in Σ^* , A a nonterminal in V, and δ a string over the alphabet of G_{LR} such that

 $X \underset{lm}{\Longrightarrow}^* xA\delta,$ then $\delta \in V^*$.

Lemma 10.32 Let G be a grammar and G_{LR} its LRtransformed grammar. Then the following state*ments hold for all k* \geq 0*.* (a) G is LL(k) iff G_{LR} is LL(k). (b) G is SLL(k) iff G_{IR} is SLL(k). **Proof**) Assume that G is not LL(k), then $S \Longrightarrow^* xA\delta \Longrightarrow x\omega_I \delta \Longrightarrow^* xy_I \text{ in } G,$ $S \Longrightarrow_{Im}^* xA\delta \Longrightarrow_{Im} x\omega_2\delta \Longrightarrow_{Im}^* xy_2 \text{ in } G,$ where $\omega_1 \neq \omega_2$ and $k: y_1 = k: y_2$. By def. $A \to (A, \omega_1) \omega_1, (A, \omega_1) \to \varepsilon$, $A \rightarrow (A, \omega_2)\omega_2$, and $(A, \omega_2) \rightarrow \varepsilon$ $S \Longrightarrow_{Im}^* xA\delta \Longrightarrow_{Im} x(A, \omega_1) \omega_1 \delta \Longrightarrow_{Im} x \omega_1 \delta \Longrightarrow_{Im}^* xy_1 \text{ in } G_{LR}$ $S \Longrightarrow_{Im}^* xA\delta \Longrightarrow_{Im} x(A, \omega_2)\omega_2\delta \Longrightarrow_{Im} x\omega_2\delta \Longrightarrow_{Im}^* xy_2 \text{ in } G_{LR}.$ Hence G_{LR} is not LL(k).

Kwang-Moo Choe

PL Labs.,

Assume that G_{LR} is not LL(k), then $S \xrightarrow{}_{lm} * xA\delta \xrightarrow{}_{lm} x\omega'_l\delta \xrightarrow{}_{lm} * xy_1$ in G_{LR} , $S \xrightarrow{}_{lm} * xA\delta \xrightarrow{}_{lm} x\omega'_2\delta \xrightarrow{}_{lm} * xy_2$ in G_{LR} , where $\omega'_l \neq \omega'_2$ and $k: y_1 = k: y_2$. ω'_1 and ω'_2 must be of the form $(A, \omega_1)\omega_1$, $(A, \omega_2)\omega_2$, where $A \rightarrow \omega_1$ and $A \rightarrow \omega_2$ are rules of G. Then $\delta \in V^*$ $S \xrightarrow{}_{lm} * xA\delta \xrightarrow{}_{lm} x\omega_1\delta \xrightarrow{}_{lm} * xy_1$ in G, $S \xrightarrow{}_{lm} * xA\delta \xrightarrow{}_{lm} x\omega_2\delta \xrightarrow{}_{lm} * xy_2$ in G, where $\omega_1 \neq \omega_2$, which means G is not LL(k).

Lemma 10.33 Let G_{LR} be the LR-transformed grammar for a reduced grammar G and let $k \ge 0$. If G_{LR} is LR(k), then it is also LL(k).

Proof) Assume G_{LR} is not LL(k), then $S \xrightarrow[lm]{} xA\delta \xrightarrow[lm]{} x(A, \omega_1)\omega_1\delta \xrightarrow[lm]{} x\omega_1\delta \xrightarrow[lm]{} xv_1y_1,$ $S \xrightarrow[lm]{} xA\delta \xrightarrow[lm]{} x(A, \omega_2)\omega_2\delta \xrightarrow[lm]{} x\omega_2\delta \xrightarrow[lm]{} xv_2y_2,$ where $\omega_1 \neq \omega_2$, $k:v_1y_1 = k:v_2y_2$, and ω_1 derives v_1 , ω_2 derives v_2 , and δ derives y_1 and y_2 . $S \xrightarrow[rm]{} \gamma Ay_1 \xrightarrow[rm]{} \gamma(A, \omega_1)\omega_1y_1 \xrightarrow[rm]{} \gamma(A, \omega_1)v_1y_1 \xrightarrow[rm]{} \gamma v_1y_1,$ $S \xrightarrow[rm]{} \gamma Ay_2 \xrightarrow[rm]{} \gamma(A, \omega_2)\omega_2y_2 \xrightarrow[rm]{} \gamma(A, \omega_2)v_2y_2 \xrightarrow[rm]{} \gamma v_2y_2.$ Since $k:v_1y_1 = k:v_2y_2$ but $(A, \omega_1) \rightarrow \varepsilon$ and $(A, \omega_2) \rightarrow \varepsilon$ are distinct, G_{LR} is not LR(k).

For any reduced grammar G, the LR-transformed grammar G_{LR} is LR(k) iff G is LL(k).

Corollary 10.35 Assume only reduced grammars are considered. Then the problem of LL(k) testing reduces in linear time to the problem of LR(k) testing, and the problem of non-LL(k) testing reduces in linear time to the problem of non-LR(k) testing.

second approach to LL(k) testing

Analogy of $M_{LR(u)}(G)$

We define $M_{LL(u)}(G)$ (or $M_u(G)$) as the FA with state alphabet

 $\{[A \rightarrow \alpha \bullet \beta, y] | A \rightarrow \alpha \beta \in P, y \text{ is suffix of } u\}$

 $\cup \{[A, y] \mid A \in N, y \text{ is suffix of } u\},\$ input alphabet V, initial state [S, ε], and with set of transitions consisting of all rules of the forms: (a) $[A, y] \rightarrow [A \rightarrow \omega \bullet, y],$ (b) $[A \rightarrow \alpha X \bullet \beta, y] X \rightarrow [A \rightarrow \alpha \bullet X \beta, z], \text{ for } X \in V,$

$$z \in FIRST_{\mu}(Xy)$$

(c) $[A \to \alpha B \bullet \beta, y] \to [B, y]$, for $B \in N$. The set of final states of $M_u(G)$ is

 $F_{produce} = \{ [A \to \omega \bullet, u] \mid A \to \omega \in P \}.$ String α may derive some terminal string in type (c).

Fact 10.36 Let G be a grammar, $u \in \Sigma^*$, the following statements hold for the automaton $M_{LL(u)}(G)$.

- (1) the number of states is at most $2 \cdot (/u/+1) \cdot /G/$
- (2) the number of type (a) transitions is at most $(/u/+1) \bullet /P /.$
- (3) the number of type (b) transitions is at most $(/u/+1)^2 \bullet /G /.$
- (4) the number of type (c) transitions is at most $(/u/+1)\bullet/G/.$

(5) the size of the automaton is $O((/u/+1)^2 \bullet /G /)$.

Let $u \in \Sigma^*$. We say that an item $[A \rightarrow \alpha \bullet \beta, y]$ of G is LL(u)-valid for string $\gamma \in V^*$ if $S \xrightarrow[]{lm} * xA\delta \xrightarrow[]{lm} x\alpha\beta\delta = x\alpha\gamma^R$ and $y \in FIRST_u(\gamma^R)$ hold in G for some strings $x \in \Sigma^*$ and $\delta \in V^*$.

Fact 10.37 If $[A \rightarrow \alpha \bullet \beta, y]$ is an LL(u)-valid item for γ then γ is a viable suffix, $[A \rightarrow \alpha \bullet \beta, y]$ is a u-item, β^R is a suffix of γ , $y \in FIRST_{/y/}(\beta FOLLOW_{/y/}(A))$. Conversely, if γ is a viable suffix, then some item is LL(u)-valid item for γ , provided that the grammar is reduced.

Kwang-Moo Choe

PL Labs.,

We denote by $VALID_{LL(u)}(\gamma)$ (or $VALID_u(\gamma)$) the set of LL(u)-valid items for γ . $S \xrightarrow{n}{lm} xA\delta \xrightarrow{}{m} x\alpha\beta\delta = x\alpha\gamma^R$ and $y \in FIRST_u(\gamma^R)$ for some $x \in \Sigma^*$ and $\delta \in V^*$.

Lemma 10.38 If in grammar G

$$[A \rightarrow \alpha B \bullet \beta, y] \in VALID_{u,n}(\gamma) \text{ and } \alpha \Rightarrow^m v \in \Sigma^*,$$

then $\forall B \rightarrow \omega \in P$
 $[B \rightarrow \bullet \omega, y] \in VALID_{u,n+m+1}(\gamma)$.

Lemma 10.39 If in grammar G,

$$[B \rightarrow \bullet \omega, y] \in VALID_{u,n}(\gamma)$$
, $n > 0$,
then $\exists A \rightarrow \alpha B\beta \in P$, string v in T*, $m < n$,
 $[A \rightarrow \alpha B \bullet \beta, y] \in VALID_{u,m}(\gamma)$ and $\alpha \rightleftharpoons_{rm}^{n-m-1} v$.

Lemma 10.40 If $[A \rightarrow \alpha \omega \circ \beta, y] \in VALID_{u,n}(\gamma)$, then $\gamma \omega^R$ is a viable suffix, $[A \rightarrow \alpha \circ \omega \beta, z] \in VALID_{u,n}(\gamma \omega^R)$. Conversely, if $[A \rightarrow \alpha \circ \omega \beta, z] \in VALID_{u,n}(\delta)$ then there is a viable suffix γ s.t. $\delta = \gamma \omega^R$ and $[A \rightarrow \alpha \omega \circ \beta, y]$ $\in VALID_{u,n}(\gamma)$, where $z \in FIRST_u(\omega y)$.

Theorem 10.41 A state $[A \rightarrow \alpha \bullet \beta, y]$ in $M_u(G)$ is accessible upon reading γ iff $[A \rightarrow \alpha \bullet \beta, y]$ is an LL(u)-valid item for γ . In other words,

 $VALID_{u}(\gamma) = \{ [A \to \alpha \bullet \beta, y] \mid [S, \varepsilon] \gamma \Longrightarrow^{*} [A \to \alpha \bullet \beta, y] \quad in$ $M_{u}(G) \}.$

Let $u \in k: \Sigma^*$. We say that items $[A_1 \rightarrow \omega_1, y_1]$ and $[A_2 \rightarrow \omega_2, y_2]$ exhibit an LL(u)-conflict if $A_1 = A_2$, $\omega_1 \neq \omega_2$, and $y_1 = y_2 = u$.

Theorem 10.42 Let G is be a grammar, G' its \$-augmented grammar, and k a natural number. Then G is non-SLL(k) iff $\exists u \in k: \Sigma^*$ \$, and accessible states I,J in $M_u(G')$ that exhibit an LL(u)-conflict.

Theorem 10.43 Let G be a grammar, G' its \$-augmented grammar, and k a natural number. Then G is non-LL(k) iff $\exists u \in k: \Sigma^*$ \$, a string $\gamma \in V^*$, and states $[A,y_1]$, $[A,y_2]$, $[A \rightarrow \omega_1, u]$, $[A \rightarrow \omega_2, u]$ in $M_u(G')$ such that following statements hold.

- (1) $[A,y_1]$ and $[A,y_2]$ are both accessible upon reading γ .
- (2) $[A \rightarrow \bullet \omega_{1}, u]$ is reachable from $[A, y_{1}]$ upon reading ω_{1}^{R} .
- (3) $[A \rightarrow \omega_2, u]$ is reachable from $[A, y_2]$ upon reading ω_2^R .
- (4) The items $[A \rightarrow \bullet \omega_1, u]$ and $[A \rightarrow \bullet \omega_2, u]$ exhibit an LL(u)-conflict, that is, $\omega_1 \neq \omega_2$.

Lemma 10.44 Given a grammar G and a string $u \in \Sigma^*$, the automaton $M_u(G)$ can be constructed in simultaneously in space $O((/u/+1)^2 \cdot |G|)$, in time $O((/u/+1)^3 \cdot |G|)$.

Theorem 10.45 Grammar G can be tested for the SLL(k) property simultaneously in deterministic space $O((k+1)^2 \bullet/G/)$ and in time $O((k+1)^3 \bullet/T/^k \bullet/G/)$.

Corollary 10.46 For any fixed k, the SLL(k) testing problem $P_{SLL(k)}$ is solvable simultaneously in deterministic space O(n) and in deterministic time $O(n^{k+1})$.

Theorem 10.47 Grammar G can be tested for the non-SLL(k) property simultaneously in nondeterministic space, O(k+|G|) and in time $O((k+1)\bullet/G|)$.

Corollary 10.48 For any fixed k, the non-SLL(k) testing problem $P_{non-SLL(k)}$ is solvable in nondeterministic time O(n).

Corollary 10.49 The uniform non-SLL(k) testing problem $P_{non-SLL}$ is solvable in nondeterministic polynomial time when k is expressed in unary, and in nondeterministic one-level exponential time when k is expressed in binary.

Theorem 10.50 Grammar G can be tested for the LL(k) property simultaneously in deterministic space $O((k+1)^2 \cdot |G|^2)$ and in deterministic time $O((k+1)^4 \cdot |T|^k \cdot |G|^2)$.

Theorem 10.51 Grammar G can be tested for the non-LL(k) property simultaneously in nondeterministic space O(k+|G|) and in nondeterministic time $O((k+1)+|G|^2)$.

We define $M_{u-set}(G)$ as the FA with state alphabet $\{[A \to \alpha \bullet \beta, W] | A \to \alpha \beta \in P, W \subseteq SUFFIX(u)\}$ $\cup \{[A, W] | A \in N, W \subseteq SUFFIX(u)\},$

input alphabet V, initial state [S, ε], and with set of transitions consisting of all rules of the forms: (a) [A, W] \rightarrow [A $\rightarrow \omega \bullet$, W], (b) [A $\rightarrow \alpha X \bullet \beta$, W]X \rightarrow [A $\rightarrow \alpha \bullet X\beta$, FIRST_u(XW)], for X \in V (c) [A $\rightarrow \alpha B \bullet \beta$, W] \rightarrow [B, W], for B \in N. The set of final states of M_{u-set}(G) is F_{produce}={[A $\rightarrow \omega \bullet$, W]/A $\rightarrow \omega \in P$, $u \in W \subset SUFFIX(u)$ }.

Fact 10.52 Let $G=(V,\Sigma,P,S)$ be a grammar, a string $u \in \Sigma^*$, the following statements hold in the automaton $M_{u-set}(G)$.

- (1) the number of states is at most $2 \cdot 2^{(/u/+1)} \cdot /G / C$
- (2) the number of type (a) transitions is at most $2^{(/u/+1)} \bullet /P/.$
- (3) the number of type (b) transitions is at most $2^{(/u/+1)} \bullet /G/.$
- (4) the number of type (c) transitions is at most $2^{(/u/+1)} \bullet /G/.$

(5) the size of the automaton is $O(2^{/u/} \bullet /G/)$.

Lemma 10.53 If $[A \rightarrow \alpha \omega \bullet \beta, W] \in VALID_{u-set,n}(\gamma)$, then $\gamma \omega^R$ is a viable suffix and $[A \rightarrow \alpha \bullet \omega \beta, FIRST_u(\omega W)] \in VALID_{u-set,n}(\gamma \omega^R)$. Conversely, if $[A \rightarrow \alpha \bullet \omega \beta, W'] \in VALID_{u-set,n}(\delta)$ then there is a viable suffix γ s.t. $\delta = \gamma \omega^R$ and $[A \rightarrow \alpha \omega \bullet \beta, W] \in VALID_{u-set,n}(\gamma)$, where $W = FIRST_u(\omega W)$.

Theorem 10.54 A state $[A \rightarrow \alpha \bullet \beta, W]$ in $M_{u-set}(G)$ is accessible upon reading γ iff $[A \rightarrow \alpha \bullet \beta, W]$ is an LL(u-set)-valid item for γ . In other words, $VALID_{u-set}(\gamma) = \{[A \rightarrow \alpha \bullet \beta, W] \mid [S, \{\varepsilon\}]\gamma$ $\Rightarrow^*[A \rightarrow \alpha \bullet \beta, W]$ in $M_{u-set}(G)\}$.

Theorem 10.55 G is non-LL(k) iff $\exists u \in k: \Sigma^*$, a string $\gamma \in V^*$, and states [A,W], $[A \rightarrow \omega_1, W_1]$, $[A \rightarrow \omega_2, W_2]$ in $M_{u-set}(G')$ s.t. following statements hold. (1) [A,W] is accessible.

(2) $[A \rightarrow \bullet \omega_{l}, W_{l}]$ is reachable from [A, W] upon reading ω_{l}^{R} .

(3) $[A \rightarrow \bullet \omega_2, W_2]$ is reachable from [A, W] upon reading ω_2^R .

(4) The items $[A \rightarrow \bullet \omega_1, W_1]$ and $[A \rightarrow \bullet \omega_2, W_2]$ exhibit an LL(u)-conflict, i.e., $\omega_1 \neq \omega_2$ and $u \in W_1 \cap W_2$.

Kwang-Moo Choe

PL Labs.,

Lemma 10.56 The automaton $M_{u-set}(G)$ can be constructed in simultaneously in space $O(2^{|u|} \bullet |G|)$, in time $O((|u|+1) \bullet 2^{|u|} \bullet |G|)$.

Theorem 10.57 Grammar G can be tested for the LL(k) property simultaneously in deterministic space $O(2^k \cdot |G|)$ and in deterministic time $O((k+1) \cdot 2^k \cdot |T|^k \cdot |G|)$.

Corollary 10.58 For any fixed k, the LL(k) testing problem $P_{LL(k)}$ is solvable simultaneously in deterministic space O(n) and in deterministic time $O(n^{k+1})$.

Theorem 10.59 Grammar G can be tested for the non-LL(k) property simultaneously in nondeterministic space , $O((k+1)^2 \cdot |G|)$ and in nondeterministic time $O((k+1) \cdot 2^k \cdot |G|^2)$.

Corollary 10.60 For any fixed k, the non-LL(k) testing problem $P_{non-LL(k)}$ is solvable in nondeterministic time O(n).

Kwang-Moo Choe

PL Labs.,

10.3 Hardness of Uniform LR(k) and LL(k) Testing

derive lower bounds on the complexity of uniform non-C(k) testing

P: solvable in deterministic polynomial time NP: solvable in nondeterministic polynomial time NE: solvable in nondeterministic

one level exponential time $(2^{p(n)})$ PSPACE: solvable in polynomial space

A decision problem **P** is hard for NP (or NP-hard) if every decision problem in NP reduces in polynomial time to **P**.

P is complete for NP (or NP-complete) if **P** is in NP and NP-hard

NE-hard, NE-complete PSPACE-hard, PSPACE-complete

open problem: whether or not P = NP.

P = NP iff some NP-complete problem is in P.

Kwang-Moo Choe

PL Labs.,
Showing NP-hardness of uniform non-C(k) testing
1) select some specific decision problem which is known to be NP-hard, and reduce this problem to uniform non-C(k) testing.

 For any decision problem P in NP, show that there exists a polynomial time-bounded reduction of P to uniform non-C(k) testing.

Let M = (V, P) be rewriting system and Q, Σ and Γ be subsets of the alphabet $V, q_s \in Q, F \subseteq Q, B \in \Gamma \setminus \Sigma$, and $\$ \in V \setminus (Q \cup \Gamma)$ s.t. $V = Q \cup \Gamma \cup \{\$\}, Q \cap \Gamma = \emptyset$, and $\Sigma \subseteq \Gamma$. We say that M is a **Turing machine** with state alphabet Q, input alphabet Σ tape symbol Γ , set of actions P, initial state q_s , set of final states F, blank symbol B, and end marker \$, denoted by

 $M = (Q, \Sigma, \Gamma, P, q_s, F, B, \$),$ if each rule in P has one of the following forms:

(a) $q_1a_1 \rightarrow q_2a_2$ (b) $q_1a_1 \rightarrow a_2q_2$ (c) $dq_1a_1 \rightarrow q_2da_2$ (d) $q_1 \$ \rightarrow q_2 \$$ (e) $q_1 \$ \rightarrow q_2 \$$ Kwang-Moo Choe "print a₂" "print a₂ and move to the right" "print a₂ and move to the left" "record end of tape" "record end of tape and extend PL Labs., Dept of CSKAIST A configuration of Turing machine M is a string of the form

 $aq\beta$,

where α and β are tape symbol strings in Γ^* , and q is a state in Q.

The string $\alpha\beta$ *is called the tape contents, and 1*: β \$ *is the tape symbol scanned at* $\$\alpha q\beta$ \$.

Configuration $q_s w$ is **initial for** an input string $w \in \Sigma^*$

Configuration $\Im q \beta$ is accepting if q is some final state in F.

A nonaccepting configuration to which no rule in P is applicable is called **error configuration**.

A computation of Turing machine M on input string w is any derivation in M from the initial configuration for w.

 $L(M) = \{ w \in \Sigma^* / \$q_s w \$ \underset{M}{\Longrightarrow} * \$\alpha q \beta \$, \alpha, \beta \in \Gamma^*, q \in F \}$

Turing machine M is nondeterministic if to some configuration two actions are applicable. **Proposition 10.61** Let M be any language recognizer (random-access machine) with input alphabet Σ . Then there exists a Turing machine M' with input alphabet Σ such that the following statements hold for some natural number k.

> (1) L(M) = L(M')
> (2) If M runs in time O(T(n)), then M' runs in time O(T(n)^k)
> (3) If M runs simultaneously in time O(T(n)) and in space O(S(n)), then M' runs simultaneously in time O(T(n)^k) and in space O(S(n)^k)
> (4) If M is deterministic, then so is M'
> (5) If M halts on input w, then so does M'

We shall show that the set of accepting computations of any Turing machine on a fixed input string can be represented as the intersection of two context-free languages.

Let $M = (Q, \Sigma, \Gamma, P, q_s, F, B, \$).$ Let $C = (\gamma_{0}, \gamma_{1}, ..., \gamma_{n+1})$ be a computation of M on w.

Kwang-Moo Choe

PL Labs.,

Assume *C* is nontrivial, meaning that $n+1 \ge 1$. Then repr(*C*)= $\gamma_0 \# \gamma_1^R \# \gamma_1 \# \gamma_2^R \# \gamma_2 \# \dots \gamma_n \# \gamma_{n+1}^R \# \#$

C and repr(*C*) are in one-to-one correspondence with each other. We shall show that $\{repr(C)/C \text{ is a nontrivial accepting computation of} M \text{ on } w\} = L(G_1(M)) \cap L(G_2(M,w)).$

 $G_1(M)$ is defined with nonterminals : $\{S_1, A_1, B_1\}$ *terminals:* $Q \cup \Gamma \cup \{\$, \#\}$ start symbol: S₁ rules 1) $S_1 \rightarrow \$A_1 \$\#S_1$, 2) $S_1 \rightarrow \#$, 3) $A_1 \rightarrow a A_1 a$, $\forall a \in \Gamma$ 4) $A_1 \rightarrow \omega_1 B_1 \omega_2^R$, $\forall \omega_1 \rightarrow \omega_2$ in P, no \$ in $\omega_1 \omega_2$ 5) $A_1 \rightarrow \omega_1$ \$# $(\omega_2$ \$ $)^R$, $\forall \omega_1$ \$ $\rightarrow \omega_2$ \$ in P 6) $B_1 \rightarrow a B_1 a$, $\forall a \in \Gamma$ 7) $B_1 \rightarrow \$\#\$$.

Kwang-Moo Choe

PL Labs.,

 $G_2(M,w)$ is defined with nonterminals : {*S*₂, *A*₂, *B*₂, *C*, *D*, *E*} *terminals:* $Q \cup \Gamma \cup \{\$, \#\}$ start symbol: S₂ rules 1) $S_2 \rightarrow \$q_s w \# A_2 \#$, $2) A_2 \rightarrow \$B_2 \$\#A_2$ $(3) A_2 \rightarrow \$D$, 4) $B_2 \rightarrow aB_2a$, $\forall a \in \Gamma$ 5) $B_2 \rightarrow qCq$, $\forall q \in Q$ 6) $C \rightarrow aCa$. $\forall a \in \Gamma$ 7) $C \rightarrow \$\#\$$. 8) $D \rightarrow aD$, $\forall a \in \Gamma$ 9) $D \rightarrow qE$, $\forall q \in F$ 10) $E \rightarrow aE, \forall a \in \Gamma$ 11) $E \rightarrow \$\#$.

$$L(E) = \Gamma^{*} \$ \#$$

$$L(D) = \Gamma^{*} F L(E) = \Gamma^{*} F \Gamma^{*} \$ \#$$

$$L(C) = \{\beta \$ \# \$ \beta^{R} / \beta \in \Gamma^{*} \}$$

Kwang-Moo Choe

PL Labs.,

$$\begin{split} L(B_{2}) &= \{ \alpha q \gamma q \alpha^{R} / \alpha \in \Gamma^{*}, q \in Q, \gamma \in L(C) \} \\ &= \{ \alpha q \beta \$ \# \$ \beta^{R} q \alpha^{R} / \alpha, \beta \in \Gamma^{*}, q \in Q \} \\ &= \{ \alpha q \beta \$ \# \$ (\alpha q \beta)^{R} / \alpha, \beta \in \Gamma^{*}, q \in Q \} \\ &= \{ \alpha q \beta \$ \# \$ (\alpha q \beta)^{R} / \alpha, \beta \in \Gamma^{*}, q \in Q \} \\ &= \{ \alpha q \beta \$ \# \$ (\alpha q \beta)^{R} / \alpha, \beta \in \Gamma^{*}, q \in Q \} \\ &= \{ \alpha q \beta \$ \# \$ (\alpha q \beta)^{R} / \alpha, \beta \in \Gamma^{*}, q \in Q \} \\ &= \{ \alpha q \beta \$ \# \$ (\alpha q \beta)^{R} / \alpha, \beta \in \Gamma^{*}, q \in Q \} \\ L(A_{2}) &= (\$ L(B_{2}) \$ \#)^{*} \$ L(D) \\ &= \{ \$ \delta^{R} \$ \# \$ \delta \$ \# / \delta \in \Gamma^{*} Q \Gamma^{*} \}^{*} \$ \Gamma^{*} F \Gamma^{*} \$ \# \\ &= \{ \gamma^{R} \# \gamma \# \$ \delta \$ \# / \delta \in \Gamma^{*} Q \Gamma^{*} \}^{*} \$ \Gamma^{*} F \Gamma^{*} \$ \# \\ &= \{ \gamma^{R} \# \gamma \# / \gamma \in \$ \Gamma^{*} Q \Gamma^{*} \$ \}^{*} \$ \Gamma^{*} F \Gamma^{*} \$ \# \\ &= \{ \gamma^{R} \# \gamma_{I} \# \gamma_{I} \# \gamma_{2} \# \gamma_{2} \# \dots \gamma^{R}_{n+1} \# \# | n \ge 0 , \\ \gamma_{i} is a configuration of M for all i = 1, ..., n, \\ \gamma_{n+1} \in \$ \Gamma^{*} F \Gamma^{*} \$ \} \\ L(S_{2}) &= \$ q_{s} w \$ \# L(A_{2}) \# \\ &= \{ \$ q_{s} w \$ \# \gamma^{R}_{1} \# \gamma_{I} \# \gamma^{R}_{2} \# \gamma_{2} \# \dots \gamma^{R}_{n} \# \gamma^{R}_{n+1} \# \# / n \ge 0 , \\ \gamma_{i} \in \$ \Gamma^{*} Q \Gamma^{*} \$, \gamma_{n+1} \in \$ \Gamma^{*} F \Gamma^{*} \$ \} \end{split}$$

Lemma 10.63 For any Turing machine M and input string w,

 $L(G_{2}(M,w)) = \{\gamma_{0} \# \gamma_{1}^{R} \# \gamma_{1} \# \gamma_{2}^{R} \# \gamma_{2} \# \gamma_{2} \# \gamma_{2} \# \gamma_{n+1} \# \# | n \ge 0,$ $\gamma_{0} \text{ is a initial configurations of } M \text{ for } w,$ $\gamma_{i} \text{ is a configuration of } M \text{ for all } i = 1, ..., n,$

Kwang-Moo Choe

PL Labs.,

Theorem 10.64 Let M be a Turing machine and w an input string. Then

 $L(G_1(M)) \cap L(G_2(M,w)) = \{repr(C) \mid C \text{ is } a \text{ nontrivial accepting computation of } M \text{ on } w \}.$

Furthermore, for any natural number k > |w|+3 $k:L(G_1(M)) \cap k:L(G_2(M,w)) \subseteq \{k:repr(C) \mid C \text{ is a nontrivial computation of } M \text{ on } w \}.$

Moreover, if repr(C) belongs to $k:L(G_2(M,w))$, then the computation C is an accepting computation. **Proof**. a) Assume $\Phi \in L(G_1(M)) \cap L(G_2(M,w))$. Any string in $L(G_1(M))$ is either # or of the form $\phi_0 \# \psi_1^R \# \phi_1 \# \psi_2^R \# ... \phi_n \# \psi_{n+1}^R \# \#$, where $n \ge 0$, ϕ_i and ψ_{i+1} are conf. and $\phi_i \Rightarrow \psi_{i+1}$. Any string in $L(G_2(M,w))$ is of the form $\gamma_0 \# \gamma_1^R \# \gamma_1 \# \gamma_2^R \# \gamma_2 \# ... \gamma_m \# \gamma_{m+1}^R \# \#$, where $m \ge 0$, γ_0 : initial conf., γ_{m+1} : accepting conf. γ_i : configuration. Clearly $\Phi \neq \#$.

Two string can be equal if $n = m, \ \phi_i = \gamma_i \text{ for } i = 0, ..., n+1.$

Kwang-Moo Choe

PL Labs.,

Assume C be a nontrivial accepting computation of M on w. $repr(C) = \gamma_0 \# \gamma_1^R \# \gamma_1 \# \gamma_2^R \# \gamma_2 \# \dots \ \gamma_n \# \gamma_{n+1}^R \# \#,$ where γ_0 : initial conf., γ_{m+1} : accepting conf. $\gamma_i \Rightarrow \gamma_{i+1}, 0 \le i \le n.$ $repr(C) \in L(G_1(M)), repr(C) \in L(G_2(M,w)).$

b) Let Φ in $k: L(G_1(M) \cap k: L(G_2(M, w)))$. Any string in $k: L(G_1(M)$ is either k: # or of the form $k: \phi_0 \# \psi_1^R \# \phi_1 \# \psi_2^R \# ... \phi_n \# \psi_{n+1}^R \# \#$, where $n \ge 0$, ϕ_i and ψ_{i+1} are conf. and $\phi_i \Longrightarrow \psi_{i+1}$. Any string in $k: L(G_2(M, w))$ is of the form $k: \gamma_0 \# \gamma_1^R \# \gamma_1 \# \gamma_2^R \# \gamma_2 \# ... \gamma_m \# \gamma_{m+1}^R \# \#$, where $m \ge 0$, $\gamma_0: \$q_s w \$$, $\gamma_i: conf. 0 \le i \le m+1$. Since k > 3, $\Phi \ne k: \#$. Since $k > /w/ + 3 = /\gamma_0/$, $\phi_0 = \gamma_0$. Hence Φ must be of the form k: repr(C)

c) Since repr(C) is end with ##, if $repr(C) \in k: L(G_2(M, w))$, $repr(C) \in L(G_2(M, w))$, which means that C is an accepting computation.

Kwang-Moo Choe

PL Labs.,

Theorem 10.65 (Harmanis, 1967) Given any Turing machine M and input string w, the pair(M,w) can be transformed in polynomial time into a pair of context-free grammars (G_1, G_2) such that the following statements are logically equivalent. (1) M accepts w. (2) $L(G_1) \cap L(G_2) \neq \emptyset$ **Proof.** We may assume that $q_s \notin F$. Note that if $q_s \in F$ then $L(M) = \Sigma^*$ set of actions $\{q_s a \rightarrow q_f a \mid a \in \Sigma \cup \{\$\}\}$ When $q_s \notin F$, it follows that every accepting computation must be nontrivial. *Choose* $G_1 = G_1(M), G_2 = G_2(M, w).$ Then M accepts w iff $\{repr(\mathbf{C}) \mid ...\} \neq \emptyset$ iff $L(G_1) \cap L(G_2) \neq \emptyset$

*acceptance problem P*_{accept}: "Does Turing machine M accepts input w?"

nonemptiness of intersection problem $P_{non-\cap}$: "Given two CFG G_1 and G_2 , is $L(G_1) \cap L(G_2) \neq \emptyset$?"

Kwang-Moo Choe

PL Labs.,

A grammar is s-grammar when all the rules begins with a terminal, and there is no pair of rules $A \rightarrow a\beta_1 / a\beta_2$, where $\beta_1 \neq \beta_2$.

A nonterminal A of a context-free grammar has the sproperty if (1) all the rules of A begin with a terminal, (2) there is no pair of rules $A \rightarrow a\beta_1 / a\beta_{2,}$ where $\beta_1 \neq \beta_2$.

We shall show that $G_1(M)$ and $G_2(M,w)$ can be replaced by two s-grammars, when M satisfies some additional conditions.

Consider $G_1(M)$. For A_1 the s-property is violated, $G_1(M)$ has $A_1 \rightarrow dA_1 d$ and $A_1 \rightarrow dq_1 a_1 B_1 a_2 dq_2$, where $dq_1 a_1 \rightarrow q_2 da_2$ is an action of M.

 $\hat{G}_{1} (M) : resulting of left factoring of G_{1}(M).$ 1) rules of S_{1} and B_{1} are as in $G_{1}(M)$. 2) $A_{1} \rightarrow X[A_{1},X]$ for all $X \in \Gamma \cup Q$. 3) $[A_{1},a_{1}] \rightarrow a_{2}[A_{1},a_{2}]a_{1}$ for all $a_{1}, a_{2} \in \Gamma$.

Kwang-Moo Choe

4) each rule of the form $A_1 \rightarrow X_1 \dots X_m B_1 Y_1 \dots Y_n$ is replaced by $[A_1, X_1] \rightarrow X_2 [A_1, X_1 X_2]$

$$\begin{split} & [A_1, X_1 \dots X_{m-1}] \rightarrow X_m B_1 [A_1, X_1 \dots X_m B_1] \\ & [A_1, X_1 \dots X_m B_1] \rightarrow Y_1 [A_1, X_1 \dots X_m B_1 Y_1] \\ & \dots \\ & [A_1, X_1 \dots X_m B_1 Y_1 \dots Y_{n-1}] \rightarrow Y_n. \end{split}$$

Then
$$L(G_1(M)) = L(\widehat{G}_1(M))$$
. And
 $\widehat{G}_1(M)$ is s-grammar.
1) S_1 and B_1 have s-property.
2) $[A_1,\gamma]$, where $|\gamma| \ge 1$, has s-property.
3) rules of $[A_1,q]$, where $q \in Q$, are the forms
 $[A_1,q] \rightarrow a[A_1,qa]$
4) rules of $[A_1,a]$, where $a \in \Gamma$, are of the forms
 $[A_1,a] \rightarrow b[A_1,b]a$, where $b \in \Gamma$ or
 $[A_1,a] \rightarrow q[A_1,aq]$, where $q \in Q$.

Lemma 10.66 For any Turing machine M,

Kwang-Moo Choe

PL Labs.,

Dept of CSKAIST

...

Lemma 10.69 Any Turing machine $M = (Q, \Sigma, \Gamma, P, P)$ q_s , F', B, \$) can be transformed in time O(|M|) into a Turing machine $M' = (Q', \Sigma, \Gamma, P', q_s, F', B, \$)$ such that the following statements hold. (1) q_s does not belong to F'. (2) M' can maker no move out of states in F'. (3) M' accepts only at the extreme right end of its tape. (4) L(M') = L(M). (5) If M is T(n) time-bounded, M' is $O(max\{n,T(n)\})$ time-bounded. (6) If M is S(n) space-bounded, M' is S(n)pace-bounded. (7) If M is simultaneously T(n) timebounded and S(n) space-bounded, M' is simultaneously $O(max\{n,T(n)\})$ timebounded and S(n) space-bounded. **Proof.** $Q' = Q \cup \{q' \mid q \in F, q' \notin Q \cup \Gamma\} \cup \{q_f\}$ $P' = P \cup \{qa \rightarrow q'a \mid q \in F, a \in \Gamma \cup \{\$\}\}$ $\cup \{q'a \rightarrow aq' \mid q \in F, a \in \Gamma\}$ $\cup \{q' \$ \rightarrow q_f \$\}$ $F' = \{q_f\}.$

Kwang-Moo Choe

PL Labs.,

Consider $G_2(M, w)$. $G_2(M, w)$ is not LL(k) for any k. Observe that for any $k \ge 1$, $A_2 \rightarrow \$B_2 \$\#A_2$ and $A_2 \rightarrow \$D$ are rules

 $FIRST_k(\$B_2\$\#A_2)$

 $= k: \{\gamma^{R} \# \gamma \# / \gamma \in \$\Gamma^{*} Q \Gamma^{*} \$\}^{+} \$\Gamma^{*} F \Gamma^{*} \$ \#$ FIRST_k(\$D)= k: \$\Gamma^{*} F \Gamma^{*} \\$ \#

intersection of the two $FIRST_k$ contains all strings in Γ^{k-1} and in $\Gamma^m F\Gamma^n$, $m, n \ge 0, m+n = k - 2$.

Remove the above conflict if restriction on M. $A_2 \rightarrow \$D$ generates reversal of all accepting conf. Assume M accepts only at the extreme right end $(\$q\$, where q \in F)$.

Then restrict $L(\$D) = \$F\Gamma^*\$\#$. Remove from $G_2(M,w)$ all $D \rightarrow aD$, where $a \in \Gamma$.

Now every string in $FIRST_k(\$D)$ begins with \$q.

Another conflict, intermediate conf. γ in $\gamma^R \# \gamma \#$ derived by $B_2 \# m$ ay contain states belonging to F. M make no move out of a final state. Restrict $L(\$B_2 \$\# A_2) = \{\gamma^R \# \gamma \# / \gamma \in \$\Gamma^*(Q \setminus F)\Gamma^*\$\}^+\$F\Gamma^*\$\#$

Kwang-Moo Choe

PL Labs.,

 \hat{G}_{2} (M,w) is the grammar with nonterminals : {S₂, A'₂, A₂, B₂, C, E} *terminals:* $Q \cup \Gamma \cup \{\$, \#\}$ start symbol: S₂ rules 1) $S_2 \rightarrow \$q_s w \# A_2 \#$, $(2) A_2 \rightarrow A'_2$ 3) $A'_2 \rightarrow aB_2a$ $\#A_2$, $\forall a \in \Gamma$ 4) $A'_2 \rightarrow qCq$ $\#A_2 \quad \forall q \in Q \setminus F$ 5) $A'_2 \rightarrow qE, \forall q \in F$ 6) $B_2 \rightarrow aB_2a$, $\forall a \in \Gamma$ 7) $B_2 \rightarrow qCq$, $\forall q \in Q$ 8) $C \rightarrow aCa$, $\forall a \in \Gamma$ 9) $C \rightarrow \$\#\$$. 10) $E \rightarrow aE$, $\forall a \in \Gamma$ 11) $E \rightarrow$ \$#.

Lemma 10.67 For any Turing machine M and input string w,

$$\begin{split} L(\hat{G}_2 \ (M,w)) &= \ \{\gamma_0 \, \# \, \gamma_1^R \ \# \, \gamma_1 \, \# \, \gamma_2^R \ \# \, \gamma_2 \, \# \\ \dots \ \gamma_n \, \# \, \gamma_{n+1}^R \ \# \, \# \, | \ n \geq 0 \ , \end{split}$$

Kwang-Moo Choe

PL Labs.,

 γ_0 is a initial configurations of M for w, γ_i is a configuration in $\Gamma^*(Q \setminus F) \Gamma^*$ for all i = 1, ..., n, γ_{n+1} is a configuration in $\Gamma^*(Q \setminus F) \Gamma^*$ } Moreover, the grammar \hat{G}_2 (M, w) is an s-grammar of size O(|M| + |w|) and can be constructed from M and w in time O(|M| + |w|).

Theorem 10.68 Let M be a Turing machine such that the following statements hold.

(1) The initial state q_s of M is not a final state.

(2) *M* can make no move out of a final state.

(3) *M* accepts only at the extreme right end of its tape.

Then for any input string w

 $L(\hat{G}_1(M)) \cap L(\hat{G}_2(M,w)) = \{repr(C) \mid C \text{ is an} \\ accepting computation of M on w \}. \\ Furthermore, for any natural number <math>k > |w|+3 \\ k:L(\hat{G}_1(M)) \cap L(\hat{G}_2(M,w)) \subseteq \{repr(C) \mid C \text{ is} \\ a \text{ nontrivial computation of M on } w \}. \\ Moreover, if repr(C) belongs to k:L(\hat{G}_2(M,w)), then \\ k:L(\hat{G}_2(M,w)) \in Repr(C) + Repr$

Kwang-Moo Choe

PL Labs.,

Theorem 10.71 The nonemptiness of intersection problem for s-languages is unsolvable.

 $\hat{G}(M,w)$: uniting the s-grammars $\hat{G}_1(M)$ and

 \hat{G}_2 (*M*,*w*), and $S \rightarrow S_1 / S_2$.

Theorem 10.72 Given any Turing machine M and input string w, the pair (M,w) can be transformed in polynomial time into a context-free grammar G such that the following statements are logically equivalent.

(1) M accepts w.

(2) G is ambiguous.

Proof. Let $G = \hat{G}(M, w)$. $\hat{G}_1(M)$ and $\hat{G}_2(M, w)$ can be constructed from M and w in polynomial time. Then so can $\hat{G}(M, w)$.

The only way $\hat{G}(M,w)$ can be ambiguous is that $S \xrightarrow{\longrightarrow} S_I \xrightarrow{\longrightarrow} *w$,

 $S \xrightarrow{}_{\overline{lm}} S_2 \xrightarrow{}_{\overline{lm}} W.$

sentence w exists iff M accepts w.

*ambiguity problem P*_{amb}: "Given a context-free grammar G

Kwang-Moo Choe

PL Labs.,

Theorem 10.74 If $C = (\gamma_0, \gamma_1 \dots \gamma_t)$, $t \ge 1$, is a computation of Turing machine M on input string w, then

$$\begin{split} |\operatorname{repr}(\mathbf{C})| &\leq 2t \cdot (|w|+t+4) + 1. \\ \mathbf{Proof.repr}(\mathbf{C}) &= \gamma_0 \# \gamma_1^R \# \gamma_1 \# \gamma_2^R \# \dots \gamma_{t-1} \# \gamma_t^R \# \# \\ \operatorname{Here} |\gamma_0| &= |\$q_s w \$ | = |w| + 3. \\ |\gamma_i| &\leq |\gamma_0| + t, \ i = 1, \dots, t. \\ |\operatorname{repr}(\mathbf{C})| &= |\gamma_0| + 2|\gamma_1 \# | + \dots + 2|\gamma_{t-1} \# | + |\gamma_t^R \# | + 1 \\ &\leq 2t \left(|\gamma_0| + 1 + t \right) + 1 = 2t \cdot (|w| + t + 4) + 1 \end{split}$$

Theorem 10.75 Let M be a Turing machine such that the following statements hold.

- (1) The initial state q_s of M is not a final state.
- (2) *M* can make no move out of a final state.
- (3) *m* accepts only at the extreme right end of its tape.

Further let w be an input string and assume that there is a natural number t > |w| such that

(4) *M* makes no more than t moves on w, that is, *M* has no computation on w with length greater than t.

Then for all $k \ge 13 \cdot t^2$ the following statements are

Kwang-Moo Choe

PL Labs.,

logically equivalent.

(a) M accepts w in time t.
(b) G(M,w) is ambiguous.
(c) G(M,w) is not C(k), where C(k) denotes any of the grammar classes
LR(k), LALR(k), SLR(k), LL(k), LALL(k), or SLL(k).

Proof. Similar to the proof of T 10.72, a) implies b), which implies c).

Assume a) is not true.

Then M has on w no accepting computation. All computations on w has length at most t.

Let $C = (\gamma_0, \gamma_1, ..., \gamma_{m+1}), 0 \le m < t$, be a computation on.

Then $|repr(\mathbf{C})| \leq 2t (t+t+4) + 1 = 4t^2 + 8t + 1 \leq 13t^2$. for all $k \geq 13t^2$, $k:L(S_1) \cap k:L(S_2) \subseteq \{repr(\mathbf{C}) \mid \mathbf{C} \text{ is } ...\} = \emptyset$. $k:L(S_1) \cap k:L(S_2) = \emptyset$. Hence S has SLL(k) property. \hat{G} (M,w) has SLL(k) property. It is also LALL(k), LL(k), LALR(k), LR(k), and unambiguous.

A function T from the set of natural numbers to the set of positive natural numbers is time-constructible if

Kwang-Moo Choe

PL Labs.,

Theorem 10.77 (Hunt, Szymanski and Ullman, 1975) Let C(k), for all $k \ge 0$, denote the class of SLL(k), LL(k), SLR(k), or LR(k) grammars. Then the problem of uniform non-C(k) testing is NP-complete when k is expressed in unary, and NE-complete when k is expressed in binary. When C(k) denotes the class of LA-LR(k) or LALL(k) grammars, the problem of uniform non-C(k) testing is NP-hard when k is expressed in unary, and NE-hard when k is expressed in binary. **Proof.** We have shown that for C(k) the uniform non-C(k) = SLL(k), LL(k), SLR(k), LR(k), testing problemis in NP when k is expressed in unary. To show that the problem is NP-hard we have to establish polynomial-time reductions to this problem from arbitrary decision problems in NP. Let **P** be any decision problem in NP.

 \exists polynomial p and p(n) time-bounded TM M s.t.

M accepts *w* iff *w* is a yes-instance of **P**. By P 10.76 we may assume M never makes more than p(|w|) moves on *w*.

Now any instance w of **P** can be transformed into

 $(\hat{G}(M,w), un(13^{\circ}p(|w|)^2)),$ where un(k) denotes the unary representation of k. By T 10.75,

Kwang-Moo Choe

"Given a context-free grammar G, is there a natural number k such that G is C(k)?"

Theorem 10.78 (Knuth, 1965; Rosenkrantz and Stearns, 1970) Let C(k) denote one of the grammar classes LR(k), LALR(k), SLR(k), LL(k), LALL(k), or SLL(k).

It is unsolvable whether or not a given context-free grammar G is C(k) for some $k \ge 0$.

10.4 Complexity of LALR(k) and LALL(k) testing

For any fixed $k \ge 1$, $P_{LALR(k)}$ is PSPACE-complete. For any fixed $k \ge 2$, $P_{LALL(k)}$ is PSPACE-complete.

 $NP \subseteq PSPACE.$

Theorem 10.79 For any fixed $k \ge 0$, the problems of non-LALR(k) testing and LALR(k) testing are in *PSPACE*. **Proof.**

1) $Q_1 := Q_2 := \{[S' \rightarrow \$S\$, \varepsilon]\};$ while true do begin if $CORE(Q_1) = CORE(Q_2)$ then if $Q_1 \cup Q_2$ contains a pair of distinct items exhibiting an LR(k)-conflict then output "G is non-LALR(k)" and halt guess strings X and $Y \in V \cup \{\$, \varepsilon\}$ $Q_1 := GOTO(Q_1, X)$ $Q_2 := GOTO(Q_2, Y)$ end 2) By Savitch's Theorem PSPACE = NSPACE.

Kwang-Moo Choe

PL Labs.,

Regular expression nonuniversality $P_{nonuniv}$: "Given a regular expression E over V, $is L(E) \neq V^*$?"

Noncomputations of M on input w means any string that does not represent a valid computation of M on w.

We shall show that given any polynomial p, a p(n) space-bounded M, and w, the pair (M, w) can be transformed in polynomial time into a regular expression E(M, p, w) that denotes the set of those strings that are not representations of accepting computations of M on w.

 $V^* \setminus L(E(M, p, w))$ denotes accepting computation. Then

M accepts w iff $L(E(M, p, w)) \neq V^*$.

Let $M = (Q, \Sigma, \Gamma, P, q_s, F, B, \$)$. represent computation $(\gamma_0, \gamma_1, ..., \gamma_n)$ as string $\gamma_0 ... \gamma_n$.

any configuration
$$\gamma_i$$
 is a string in $\Gamma^* Q \Gamma^*$.
 $E_1(M) = \varepsilon \cup (\Gamma^* Q \Gamma^*)^* (\Gamma \cup Q) V^*$
 $\cup (\Gamma^* Q \Gamma^*)^* (\Gamma \cup Q)^*$
 $\cup (\Gamma^* Q \Gamma^*)^* (\Gamma \cup Q)^*$

Kwang-Moo Choe

PL Labs.,

initial conf.
$$q_s w$$

 $E_2(M) = \Gamma^+ Q \Gamma^* V^* \cup (Q \setminus \{q_s\}) \Gamma^* V^*$
 $\cup q_s \Gamma^* (\Gamma \setminus \Sigma) \Gamma^* V^*$

For M and $w = a_1...a_n$ in Σ^n , initial conf. $q_s a_1...a_n$

$$\begin{split} E_{3}(M,w) &= \$q_{s}\$V^{*} \cup \$q_{s}\Sigma\$V^{*} \cup \ldots \cup \$q_{s}\Sigma^{n-1}\$V^{*} \\ &\cup \$q_{s}\Sigma^{n+1}\Sigma^{*}\$V^{*} \\ &\cup \$q_{s}(\Sigma \backslash \{a_{1}\})\Sigma^{*}\$V^{*} \\ &\cup \$q_{s}\Sigma(\Sigma \backslash \{a_{2}\})\Sigma^{*}\$V^{*} \cup \ldots \\ &\cup \$q_{s}\Sigma^{n-1}(\Sigma \backslash \{a_{n}\})\Sigma^{*}\$V^{*} . \end{split}$$

accepting conf. $aq\beta$, where $q \in F$. $E_4(M) = V^* \Gamma^*(Q \setminus F) \Gamma^*$

$E_1(M) \cup E_2(M) \cup E_3(M,w) \cup E_4(M)$ denotes the set of those strings in V^* that are not form $\gamma_0 \dots \gamma_n, \gamma_0$ is the initial conf. γ_i is a conf., γ_n is accepting conf.

conf. shorter than s(|w|)

Kwang-Moo Choe

PL Labs.,

tape length, postion of state

$$E_{6}(M,s,w) = \bigcup \{ V^{*} \$ \Gamma^{m} Q \Gamma^{n} \$ \$ \Gamma^{k} Q \Gamma^{l} \$ V^{*} | m,n,k,l \ge 0, \\ 0 \le m + n \le s(/w/) - 3, \ 0 \le k + l \le s(/w/) - 3, \\ but none of conditions are satisfed:
(a) k = m and l = n > 0,
(b) k = m + 1 and l = n - 1,
(c) k = m - 1 and l = n + 1 > 1,
(d) k = m and l = n = 0,
(e) k = m and l = n + 1 = 1,
(f) k = m - 1 and l = n + 1 = 1 \}$$

Restrict our attention to strings denoted by (a) $V^* \$ \Gamma^m Q \Gamma^n \$ \$ \Gamma^m Q \Gamma^n \$ V^*$, where $m \ge 0$, n > 0(b) $V^* \$ \Gamma^m Q \Gamma^n \$ \$ \Gamma^{m+1} Q \Gamma^{n-1} \$ V^*$, where $m \ge 0$, n > 0(c) $V^* \$ \Gamma^m Q \Gamma^n \$ \$ \Gamma^{m-1} Q \Gamma^{n+1} \$ V^*$, where $m \ge 0$, n > 0(d) $V^* \$ \Gamma^m Q \Gamma^n \$ \$ \Gamma^m Q \$ V^*$, where $m \ge 0$ (e) $V^* \$ \Gamma^m Q \Gamma^n \$ \$ \Gamma^m Q \Gamma \$ V^*$, where $m \ge 0$ (f) $V^* \$ \Gamma^m Q \Gamma^n \$ \$ \Gamma^{m-1} Q \Gamma \$ V^*$, where $m \ge 0$ In (a), (b), (c), $m + n \le s(/w/) - 3$, In (d), (e), (c), $m + n \le s(/w/) - 3$,

tape symbol changed $E_7(M,s,w)$

Kwang-Moo Choe

PL Labs.,

$$= \cup \{ V^* \$ \Gamma^m a \Gamma^* Q \Gamma^* \$ \$ \Gamma^m (\Gamma \setminus \{a\}) \Gamma^* Q \Gamma^* \$ V^* / a \in \Gamma, 0 \le m \le s(/w/) - 4 \},$$

$$E_{7}(M,s,w)$$

= $\cup \{ V^{*} \Gamma^{*} a \Gamma^{+} a Q \Gamma^{n} \Gamma^{*} Q \Gamma^{*} (\Gamma \setminus \{a\}) \Gamma^{n} V^{*} / a \in \Gamma, 0 \le m \le s(/w/) - 4 \},$

Apply action
Convention:
$$q_1, q_2 \in Q$$
, $a, a_1, a_2, d_1, d_2 \in \Gamma$, $m \ge 0$,
P denote set of actions of M
 $E_a(M, s, w) = \bigcup \{ V^* \$ \Gamma^m q_1 a_1 \Gamma^* \$ \$ \Gamma^m q_2 a_2 \Gamma^* \$ V^* / m \le s(/w/) - 4, q_1 a_1 \rightarrow q_2 a_2 \notin P \}$
 $E_b(M, s, w) = \bigcup \{ V^* \$ \Gamma^m q_1 a_1 \Gamma^* \$ \$ \Gamma^m a_2 q_2 \Gamma^* \$ V^* / m \le s(/w/) - 4, q_1 a_1 \rightarrow a_2 q_2 \notin P \}$,
 $E_c(M, s, w) = \bigcup \{ V^* \$ \Gamma^m d_1 q_1 a_1 \Gamma^* \$ \$ \Gamma^m q_2 d_2 a_2 \Gamma^* \$ V^* / m \le s(/w/) - 4, q_1 a_1 \rightarrow a_2 q_2 \notin P \}$,

$$\begin{split} m \leq s(/w/) - 5, \ d_1 q_1 a_1 \to q_2 d_2 a_2 \notin P \} \\ E_d(M, s, w) = &\cup \{ V^* \$ \Gamma^m q_1 \$ \$ \Gamma^m q_2 \$ V^* / \\ m \leq s(/w/) - 3, \ q_1 \$ \to q_2 \$ \notin P \} , \\ E_e(M, s, w) = &\cup \{ V^* \$ \Gamma^m q_1 \$ \$ \Gamma^m q_2 a \$ V^* / \end{split}$$

Kwang-Moo Choe

PL Labs.,

Theorem 10.80 Let p be a polynomial, M a Turing machine that runs in space p(n), and w an input string. Then

 $L(E(M,p,w)) = V^* \setminus \{\gamma_0 \gamma_1 \dots \gamma_n \mid n \ge 0, \\ (\gamma_0, \dots, \gamma_n) \text{ is an accepting computation} \\ of M on w having space complexity at \\ most p(|w|) \},$

where V is the alphabet of M. Moreover, the regular expression E(M,p,w) can be constructed from M and w in time polynomial in |M| + |w|.

Theorem 10.81 (Stockmeyer and Meyer, 1973) *P*_{nonuniv}, regular expression nonuniversality, is *PSPACE-hard*.

Proof. To show that $P_{nonuniv}$ is PSPACE-hard

1) Choose any problem **P** in PSPACE,

2) establish a polynomial-time reduction of

P to **P**_{nonuniv}

Since **P** is in PSPACE it has a polynomial spacebounded solution. There exists a polynomial p and p(n) space-bounded Turing machine M s.t. M accepts input w iff w is a yes-instance of **P**. By T 10.80 there exists a polynomial time-bounded algorithm that transforms any input string w of M

Kwang-Moo Choe

PL Labs.,

Establishing a polynomial-time reduction of r.e. nonuniversality to non-LALR(k) testing.

r.e. nonuniversality reduces in polynomial time to "Given a right-linear grammar G with terminal T and with set of rules contains only rules of the forms $A \rightarrow aB$ and $A \rightarrow \varepsilon$, is $L(G) \neq T^*$?". We shall show that this problem reduces in polynomial time to non-LALR(k) testing.

Let $k \ge 1$ and $G = (N \cup T, T, P, S)$ be a right-linear grammar. Further assume that the rules in P are of the forms $A \rightarrow aB$ and $A \rightarrow \varepsilon$. Define $\hat{G}(G,k)$ as grammar with nonterminals $\{\hat{S}, E_1, E_2, H_1, H_2, H_3\} \cup N$, terminals $T \cup \{c, d, f, g, h, (\hat{S}, S)\} \cup P$ start symbol S rules: $\hat{S} \rightarrow E_1 / S (\hat{S}, S) / gE_2$ $E_1 \rightarrow aE_1$, for all $a \in T$, $E_1 \rightarrow H_1 d^k / H_2 c^k$, $E_2 \rightarrow H_1 c^k / H_2 d^k$, $A \rightarrow aB(A, aB)$, for all $A \rightarrow aB$ in P $A \rightarrow H_3 f^k(A, \varepsilon)$, for all $A \rightarrow \varepsilon$ in P

Kwang-Moo Choe

PL Labs.,

Lemma 10.82 Let γ be a string such that the state $VALID_0(\gamma)$ in the LR(0) machine of the \$-augmented grammar for \hat{G} (G,k) contains a pair of distinct items $[C \rightarrow \alpha \cdot \beta]$ and $[D \rightarrow \omega \cdot]$, where $\alpha \neq \varepsilon$. Then $\gamma: l = h$.

Proof. Note that one of α and ω must be a suffix of the other, and that α and ω must suffixes of γ. $\gamma: 1 = \alpha: 1 = \omega: 1$. Denote $\gamma: 1$ by X. $X \neq \hat{S}'$, \hat{S} , H_1 , H_2 , H_3 , f, g, symbol in N∪T (No rule D→ω'Y, where Y is one of these) $X \neq E_2$, (\hat{S} , S) , (A, ε) , (A, aB), where A, $B \in N$, $a \in T$ (No two distinct item [C → αY•β] and [D → ωY•] in the same state) $X \neq c$, d

 $([E_i \rightarrow H_j c^m \bullet c^{k-m}] and [E_l \rightarrow H_r c^k \bullet] in the same state implies they are equal.$

 $X \neq E_1$

 $([E_1 \rightarrow aE_1 \bullet] \text{ and } [E_1 \rightarrow bE_1 \bullet], a \neq b, \text{ cannot simulta-}$ neously be in $VALID_0(\gamma); [\hat{S} \rightarrow E_1 \bullet]$ belongs only to $VALID_0(\$E_1) \text{ and } [E_1 \rightarrow aE_1 \bullet] \notin VALID_0(\$E_1).$ Thus X = h.

Kwang-Moo Choe

PL Labs.,

Lemma 10.83 For all $0 \le n \le k$ and strings γ the following hold for the \$-augmented grammar of \hat{G} (G,k).

Lemma 10.84 Let $0 \le n \le k$ and let γ be a string s.t. in the \$-augmented grammar of \hat{G} (G,k), $VALID_n(\gamma h) \ne \emptyset$. Then $\gamma \in \$T^* \cup \g . Moreover, $VALID_n(\gamma h)$ equals (1) { $[H_1 \rightarrow h^{\bullet}, d^n]$, $[H_2 \rightarrow h^{\bullet}, c^n]$, $[H_3 \rightarrow h^{\bullet}, f^n]$ } $if \gamma \in \$L(G)$, (2) { $[H_1 \rightarrow h^{\bullet}, d^n]$, $[H_2 \rightarrow h^{\bullet}, c^n]$ } $if \gamma \in \$L(G)$,

Kwang-Moo Choe

PL Labs.,

Proof.
$$VALID_{n}(\gamma h)$$
 can only contain the items
 $[H_{1} \rightarrow h \bullet, d^{n}], [H_{1} \rightarrow h \bullet, c^{n}], [H_{2} \rightarrow h \bullet, c^{n}],$
 $[H_{2} \rightarrow h \bullet, d^{n}], and [H_{3} \rightarrow h \bullet, f^{n}].$
 $[H_{1} \rightarrow h \bullet, d^{n}], [H_{2} \rightarrow h \bullet, c^{n}] \in VALID_{n}(\gamma h)$
 $iff [C \rightarrow \alpha \bullet E_{1}\beta, y] \in VALID_{n}(\gamma) iff \gamma \in \$T^{*}.$
 $[H_{3} \rightarrow h \bullet, f^{n}] \in VALID_{n}(\gamma h)$
 $iff [C \rightarrow \alpha \bullet A\beta, y] \in VALID_{n}(\gamma), where A \rightarrow \varepsilon in G$
 $iff \gamma is of the form \$w where w \in T, S \Rightarrow *wA in G$
 $[H_{1} \rightarrow h \bullet, c^{n}], [H_{2} \rightarrow h \bullet, d^{n}] \in VALID_{n}(\gamma h)$
 $iff [C \rightarrow \alpha \bullet E_{2}\beta, y] \in VALID_{n}(\gamma)$
 $iff [C \rightarrow \alpha \bullet E_{2}\beta, y] \in VALID_{n}(\gamma)$

Theorem 10.85 Let G be any right-linear grammar with terminal alphabet T and with a set of rules containing only rules of the forms $A \rightarrow aB$, $A \rightarrow \varepsilon$. Then for all natural numbers $k \ge 1$, \hat{G} (G,k) is LR(1). \hat{G} (G,k) is LALR(1) if $L(G) = T^*$, and non-LALR(k) if $L(G) \ne T^*$. **Proof**. Let γ'_1 and γ'_2 be strings, $[C' \rightarrow \alpha' \circ \beta', \gamma']$ in VALID₁(γ'_1) and $[C \rightarrow \omega \circ, z]$ in VALID₁(γ'_2) be two

Kwang-Moo Choe

PL Labs.,

distinct items. Then $VALID_1(\gamma'_1)$ must contain an item $[A \rightarrow \alpha \bullet \beta, y]$ from which distinct $C \rightarrow \omega \bullet$ and $\alpha \neq \varepsilon$. Now if $VALID_0(\gamma'_1) = VALID_0(\gamma'_2)$ then $\gamma'_1 = \gamma_1 h$, $\gamma'_2 = \gamma_2 h$. But then shows that $\hat{G}(G,k)$ is LR(1). it is LALR(1) if $L(G) = T^*$. L 10.84 show that if $L(G) \neq T^*$, then it cannot be LALR(k).

Theorem 10.86 For each fixed natural number $k \ge 1$, the problems of non-LALR(k) testing and LALR(k) testing are PSPACE-complete.

Theorem 10.87 For each fixed natural number $k \ge 2$, the problems of non-LALR(k) testing and LALL(k) testing are PSPACE-complete.

Theorem 10.88 Grammar G can be tested for the non-LALR(k) and non-LALL(k) properties simultaneously in nondeterministic space O(|w| + k) and in nondeterministic time $O((k+1)\cdot|G|^2 \cdot 2^{|G|})$

Theorem 10.89 The problem of uniform non-LALR(k), LALR(k), non-LALL(k), and LALL(k) testing are PSPACE-complete when k is expressed in

Kwang-Moo Choe

PL Labs.,

unary. The problems of non-LALR(k) and non-LALL(k) testing are NE-complete when k is expressed in binary.

	fixed k=1	<i>fixed</i> k ≥ 2	free k in unary	free k in binary	$\exists k, G$ is C(k)
non- SLL(k)	in P	in P	N P- com- plete	NE- com- plete	unsol vable
non- LALL (k)	in P	PSPACE com- plete	PSPACE com- plete	NE- com- plete	unsol vable
non- LL(k)	in P	in P	NP- com- plete	NE- com- plete	unsol vable
non- SLR(k)	in P	in P	N P- com- plete	NE- com- plete	unsol vable
non- LALR (k)	PSPACE com- plete	PSPACE com- plete	PSPACE com- plete	NE- com- plete	unsol vable
non- LR(k)	in P	in P	N P- com- plete	NE- com- plete	unsol vable

Table 1: Complexity of non-C(k) testing

Table 1: Upper bounds on the complexity of non-C(k) testing when $k \ge 2$ is fixed.

	determi nistic time	deter minist ic space	nondeter- ministic time	size of C(k) parser
non- SLL(k)	$O(n^{k+1})$	<i>O</i> (<i>n</i>)	O(n)	$O(2^{n+2\log n})$
non- LALL(k)	parser construction time	$O(n^2)$	$O(2^{n+2\log n})$	$O(2^{n+(k+1)\log n})$
non- LL(k)	$O(n^{k+1})$	O(n)	O(n)	$O(2^{n^{k+1}+(k+1)\log n})$
non- SLR(k)	$O(n^{k+2})^a$	$O(n^2)$	$O(n^2)$	$O(2^{n+(k+1)\log n})$
non- LALR(k)	parser construction time	$O(n^2)$	$O(2^{n+2\log n})$	$O(2^{n+(k+1)\log n})$
non- LR(k)	$O(n^{k+2})$	$O(n^2)$	$O(n^2)$	$O(2^{n^{k+1}+(k+1)\log n})$

a. For (non-)SLR(2) testing an $O(n^3)$ algorithm is known.

Table 1: Upper bounds on the Complexity of C(1)testing and on Parser Construction

	C(1) testing deterministic time	C(1) parser size	C(1) parser construction time
<i>SLL</i> (1)	$O(n^2)$	$O(n^2)$	$O(n^2)$
LALL(1)	$O(n^2)$	$O(2^{n+2logn})$	$O(2^{n+3logn})$
<i>LL</i> (1)	$O(n^2)$	$O(2^{n^2+2logn})$	$O(2^{n^2+4logn})$
SLR(1)	$O(n^2)$	$O(2^{n+2logn})$	$O(2^{n+3logn})$
LALR(1)	$O(2^{n+3logn})$	$O(2^{n+2logn})$	$O(2^{n+3logn})$
LR(1)	$O(n^2)$	$O(2^{n^2+2logn})$	$O(2^{n^2+4logn})$