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        10. Testing Grammars for Parsability

Study the complexity of the decision problems

PC(k) : "Given a context-free grammar G, 
            is G a C(k) grammar?"

PC : "Given a context-free grammar G and 
     a natural number k, is G a C(k) grammar?"

Here "C(k)" stand for "strong LL(k)", "LALL(k)",
"LL(k)", "SLR(k)", "LALR(k)", "LR(k)", 
 "non-LL(k)" or "non-LR(k)" etc.

PC(k) :  k is fixed. 
PC: k is not fixed and problem parameter
      called uniform C(k) testing problems

Convention

G: a grammar (V,,P,S)
G’: $-augmented grammar of G
N = V\
k: a natural number
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10.1 Efficient Algorithms for LR(k) and SLR(k)
Testing

A decision problem is solvable in
deterministic polynomial time(P)  if it has a 
  deterministic solution that runs in time O(p(n))
nondeterministic polynomial time(NP)  if  it has a   
  partial solution that runs in time O(p(n))
nondeterministic one level exponential time(NE) if  it   
  has a partial solution that runs in time O(2p(n)),
 where p, q are polynomials.

Nondeterministic LR(k) machine for G is
 state alphabet: Ik {qs}, qsIk
input alphabet: V 
initial state: qs
set of transition:

(i) qs [S,]
(ii) [AX,y]X[AX,y], XV, and
(iii)[AB,y][B,z],
       BN, z FIRSTk(y)

set of final states:
{[A,y]AP, y k:*}

   {[Aa,y]AaP, a, y k:*}

Here Ik : the set of all k-items of G
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Theorem10.1 A state [A,y] in the nondeter-
ministic LR(k) machine of G is accessible upon read-
ing  iff  is a viable prefix of G and  [A,y] is
an LR(k)-valid item for .     In other words,

{[A,y]qs*[A,y]} = VALIDk(),
V*.

The automaton obtained by making the nondetermin-
istic LR(k) machine deterministic is exactly the ca-
nonical LR(k) machine. 

Fact 10.2 Let M be the nondeterministic LR(k)  ma-
chine for  G. Then

(1) M has at most /k://G/+1 = O(||k/G/) 

           states .
(2) M has at most / P| transitions of type (i).
(3) M has at most /k://G/  = O(||k/G/)   

            transitions of type(ii) .
(4) M has at most /k:/2|P|/G/

           = O(||2k|P|/G/)  transitions of type (iii).
(5) the size of M is O(|G|2k+2) or O(||2k|P|/G/).   
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Reduction of the size of the automaton

 by introducing additional states of the form [B,z], 
where B is in N, z is a string in k:.

Any transition of type (iii)
  [AB,y][B,z] 

is split into two transitions :
 [AB,y][B,z]
[B,z][B,z]

MLR(k)(G) (or Mk(G)) : the finite automaton 
state alphabet : 

{[A,y] A  P,  yk:}
 {[A,y] A  N, yk:}

input alphabet : V
initial state : [S,]
set of transitions :

(a) [A,y][A,y]
(b) [AX,y]X[AX,y], for XV
(c) [AB,y][B,z], for BN, zFIRSTk(y)

final state:
    {Freduce(u)  u  k:}  {Fshift(u) | uk:},
where
 Freduce(u) = {[A,u] AP }
Fshift(u) = {[Aa,y]  Aa  P, yk:*,
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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            a ,  uFIRSTk(ay)}
Fact 10.3 The following statements hold in the au-
tomaton Mk(G).

(1) # of states is at most 
     2 /k:*//G/ = O(||k/G/)
(2) # of type (a) transitions is at most

/k:*//P/  = O(||k/P/) 

(3)  # of type (b) transitions is at most 
/k:*//G/  = O(||k/G/)

(4)  # of type (c) transitions is at most 
/k:/2/G/  = O(||2k/G/) 

(5)  the sizes of the final state sets is at most 
O(||2k/G/).

(6) the size of the automaton Mk(G) is 
O(|G|2k+1)   or O(||2k/G/).

Theorem 10.4 A state [A,y] in  Mk(G) is acces-
sible upon reading  iff  is a viable prefix of G and
[A,y] is an LR(k)-valid item for . In other
words,
{[A,y][S,]*[A,y]} =  VALIDk(),
V*.
Kwang-Moo Choe PL Labs., Dept of CSKAIST



10. Testing Grammars for Parsability 63/8/18 10. Testing Grammars for Parsability 6

Kwang-Moo Choe PL Labs., Dept of CSKAIST

Mutually accessible states : both reachable from the
initial state upon reading the same string.

Distinct k-items [A,y] and [B,z] of G’
exhibit an LR(k)-conflict if they exhibit, for k, a 
reduce-reduce conflict or a shift-reduce conflict. i.e.
(1)  =  and y = z  or
(2) 1: is a terminal and z is in FIRSTk(y)

Theorem 10.5 Let G be a grammar in which  S+S
is impossible. Then G is non-LR(k) iff the $-augment-
ed grammar G’ has a pair of distinct k-items I and J
that exhibit an LR(k)-conflict and are mutually ac-
cessible states in Mk(G).  In other words, 
G is non-LR(k) iff there are distinct k-items I =
[A,y] and J = [B,y], or I = [Aa,z]
and J = [B,y] with a, yFIRSTk(az), s.t.

[S,]*I and [S,]*J
hold in Mk(G) for some $V*.
 Proof)
G is non-LR(k) iff for some string $V*,VALIDk()
contains a pair of distinct items I, J that exhibit an
LR(k)-conflict. By Theorem 10.4, I and J belong to
VALIDk() iff they are states in Mk(G) accessible
upon reading .
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Algorithm for testing  the LR(k) property.

Step 1. Check whether or not S+S  is possible in G. 
            If yes,  output "G is non-LR(k)" and halt.
Step 2. Construct  automaton Mk(G’) with collection 

        of final state sets Freduce(u), uk:*$, and

         Fshift(u), uk:*$. Remove from each Fshift(u)

        the items [S’$S$,] and [S’$S$,]
Step 3. Determine in Mk(G) the set A of pairs of 
        mutually accessible states.

Step 4. Check whether or not the set A contains a pair 
       of distinct items I,J such that for some uk:*$ 
       I, J Freduce(u), or IFreduce(u), JFshift(u).
      If yes, output "G is non-LR(k)" and halt.
      otherwise   output "G is LR(k)" and halt.

transition of type (c) 
 [AB,y][B,z], for BN, zFIRSTk(y)
Given item [AB,y], determine  zFIRSTk(y)

Fshift(u) = {[Aa,y] Aa  P, yk:*,
            a ,  uFIRSTk(ay)}

for each uk:*$, determine all item [Aa,y]
in which uFIRSTk(ay).
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Lemma 10.6 Any grammar G can be transformed in
time O(|G|) into a grammar Gpre=(Vpre ,, Ppre ,Spre)
s.t. the following statements hold.

(1) Gpre is in canonical two-form, so that the
rules in Ppre are of the forms

ABC, AB, Aa.

(2) VVpre, for each AV generates in Gpre
exactly the nonempty terminal strings derived 
by A in G., i.e.

LGpre(A) = LG (A) \ {}, AV\.

(3)  for each AV, ApreVpre\ that generates in 
Gpre exactly the nonempty prefixes of termi-
nal strings derived by A in G, i.e.
LGpre(Apre) = {x*|x, xy LG (A)}.

(4) for each AP, , ,   [] Vpre\V 
s.t. LGpre( []) = LG ([]) \ {}.

(5) for each AP,, ,  []preVpre\V
s.t. LGpre([]pre)={x*|x,xyLG ()}
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Proof)
Transform G into a canonical two-form grammar G1
= (V1 ,, P1, S), where VV1, LG1(A) = LG(A)\{}, 
For each rule A and nonempty strings and 
there is a nonterminal []V1\V such that LG1([])
= LG([])\{}

Gpre = (Vpre , T, Ppre , Spre )
Vpre = V1 {Apre A is a nonterminal in V1}
Ppre = P1 {Apre A A is a nonterminal in V1}

 {Apre BCpre A BC is a rule in P1 }
 {Apre Bpre For some C, A BC P1,
                       C drives some terminal string}
 {Apre Bpre A B is a rule in P1 }

Gpre satisfies (1) since G1 does.
LG(A) = LGpre(A) since Ppre\P1 contains no rules for
the nonterminal in V1.
Apre generates nonempty prefixes of L(A).
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Lemma 10.7 Given grammar G, k>0, u = a1...ak*,

one can compute in space O(k2|G|) and in time
O(k3|G|), kk matrix Nu containing sets of symbols
of the form [] and []pre s.t.

Nu (i,j) = {[]|AP, ,, *ai...aj}
{[]pre|AP, ,, *ai...ajy, y*}
for 1 ij k.

Proof)
Transformed grammar Gpre = (Vpre, , Ppre, Spre).
Apply general CFG recognition algorithm

N^u(i,j) = {AVpre\ A* ai...aj in Gpre}
for 1 ij k.

N^u(i,j) contains [] iff []*ai...aj in Gpre

 iff V+, AP, , *ai...aj in G.

N^u(i,j) contains []pre iff []pre*ai...ajy in Gpre

 iff V+, AP, , *ai...aj y in G.

Remove from N^u all symbol that are not of forms []
or []pre.
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Lemma 10.8 The automaton Mk(G) can be construct-

ed in time O((k+1)3||2k|G|).
Proof)
State set, type (a) and (b) transitions, Freduce(u),

uk:* take O(//k|G|).
type (c) tansitions
([AB,y][B,u], uFIRSTk(y))

case k = 0
For any 0-item [AB,], add

[AB,][B,],
  whenever  drives some terminal string

case k > 0
For each string u=a1...al k:*

, determine
  [AB,y][B,u].
If  is nullable, add    [AB,u][B,u].
When l > 0, compute Nu.
For j=1,...,l and for []Nu(1,j), add

 [AB,aj+1...aly][B,u],
  where aj+1...alyk:* and k:uy=u.

Observe that  derives a1...ai.
For all symbols []preNu(1,l), add

 [AB,y][B,u],
where yk:* s.t. y= whenever l < k.
Observe that u is a prefix of some terminal string de-
rived by .
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Fshift(u) 
 ({[Aa,y]  Aa  P, yk:*, a, u
FIRSTk(a})
case k = 0
For any 0-item [AB,], add
[AB,]where a , drives some terminal
string
case k > 0
For each string u=a1...al k:*

if  is nullable and l > 0  add [Aa1, a2...aly],
   where a2...alyk:* and k:uy=u.
if l=k=1  drives some terminal string  add
  [Aa,y], where yk:*.
When l > 0, compute Nu.
For j=2,...,l and for []Nu(2,j), add

 [Aa1, aj+1...aly],
   where aj+1...alyk:* and k:uy=u.
For all symbols []preNu(2,l), add

 [Aa1,y],
where yk:* s.t. y= whenever l < k.

Fshift(u) 
 ({[Aa,y] Aa  P, yk:*,
                                 a, uFIRSTk(ay)})
case k = 0
Add all [AB,]where a , drives some ter-
minal string
case k > 0
For each string u=a1...al k:*

if  is nullable and l > 0  add [Aa1, a2...aly],
   where a2...alyk:* and k:uy=u.
if l=k=1 and  drives some terminal string  add
  [Aa,y], where yk:*.
When l > 0, compute Nu.
For j=2,...,l and for []Nu(2,j), add

 [Aa1, aj+1...aly],
   where aj+1...alyk:* and k:uy=u.
For all symbols []preNu(2,l), add

 [Aa1,y],
where yk:* s.t. y= whenever l < k.

Time complexity
O(|k:*|k3/G/+||2k|G|)
|k:*|k3/G/: computation of Nu, u*.
||2k|G|: generation of states and transition
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Determines the pairs of mutually accessible states

Assume M is a finite automaton with state alphabet
Q, input alphabet V, and set of transitions P.

QQ relation:
(p,q) mutually-goes-to (p’,q’), if for some XV
   P contains the transitions pXp’ and qXq’.
(p,q) by-left-passes-empty (p’,q), if P contains
    the transition pp’.
(p,q) by-right-passes-empty (p,q’), if P contains 
      the  transition qq’.

mutually-accesses = (mutually-goes-to  
  by-left-passes-emptyby-right-passes-empty)*

Lemma 10.9 States p and q are mutually accessible
iff (qs,qs) mutually-accesses (p,q), where qs is initial
state.

Lemma 10.10 For any f.a. M, the set of pairs of mu-
tually accessible states can be determined in time
O( |M|2).
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Theorem 10.11 (LR(k) test using Mk(G))Grammar
G can be tested for the LR(k) property in determinis-
tic time O((k+1)3|G|4k+2).

PLR(k) is solvable in deterministic polynomial time

O(n4k+2)
n, size of a problem instance, is proportional to |G| in 
For k in unary the uniform (non)-LR(k) testing prob-
lem is solvable in deterministic one-level exponential
time(O(2(42n + 2) log n))

A more sophisticated method for LR(k) testing

Key idea : representation of the automaton Mk (G’)
as a collection of several very small automata.

One automaton for each specific string uk:T*$.
denoted by Mu(G’)
The purpose of Mu(G’) , Computations of Mu(G’)
that end with k-items of the form [Bu] or of the
form [Aay] where FIRSTk(ay) contains u.
suffixes of u.
G = (V,T,P,S) : a grammar and u k:T*
k-item [Ay] is a u-item, if y is a suffix of u.
FIRSTk() : the set of all suffixes of u that are prefix-
es of some terminal string derived by 

Theorem 10.11 (LR(k) test using Mk(G))Grammar
G can be tested for the LR(k) property in determinis-
tic time O((k+1)3|G|4k+2).
step 1: O(|G|)
step 2: O((k+1)3||2k|G|
step 3: O(||4k|G|2)
step 4: linear time
PLR(k) is solvable in deterministic polynomial time

O(n4k+2)
n, size of a problem instance, is proportional to |G|
in PLR(k).

n=|G|+k when k is expressed in unary. 
For k in unary the uniform (non)-LR(k) testing prob-
lem is solvable in deterministic one-level exponential
time(O(2(4n + 2) log n))
(n = log22n)

n=|G|+logk when k is expressed in binary. 
For k in binary the uniform (non)-LR(k) testing prob-
lem is solvable in deterministic two-level exponential
time(O(2(4 2n + 2) log n))
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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A more sophisticated method for LR(k) testing

Key idea : representation of the automaton Mk (G’)
as a collection of several very small automata.

One automaton for each specific string uk:*$.
denoted by Mu(G’)

Let u k:*. Then k-item [Ay] is a u-item, if
y is a suffix of u.

FIRSTu() = {y**yz, xy = u for some x,z}
    denote the set of all suffixes of u that are prefixes
of some terminal string derived by 

MLR(u)(G) ( or Mu(G), for short) :
state alphabet
  {[Ay]A P, y is a suffix of u}
   {[A,y]A N,  y is a suffix of u}
input alphabet: V
initial state: [S,]
set of transitions :
(a) [A,y]  [Ay]
(b)  [AXy]X  [AXy],  for XV
(c) [[ABy][B,z],

            for BN,zFIRSTu(y)
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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set of final states : Freduce  Fshift, where
Freduce = {[A,u]A is a rule of G}
Fshift = {[Aay]|Aa is a rule of G,
        a is a terminal and uFIRSTu(ay)}

Fact 10.12 Let  u*, the following statements hold
in the automaton Mu(G).

(1) the number of states is at most 2(/u/+1)/G/
(2) the number of type (a) transitions is at most

  (/u/+1)/P/.
(3)  the number of type (b) transitions is at most 

  (/u/+1)/G/.
(4)  the number of type (c) transitions is at most 

  (/u/+1)2/G/.
(5) the size of the automaton is O((/u/+1)2/G/ ). 

An item [A,y] of G is LR(u)-valid string  V*
if S 

rm
 * Az 

rm
  z = z   and y  FIRSTu(z)

    hold in G for some strings   V* and z *

Fact 10.13 If [A,y] is an LR(u)-valid item for 
then  is a viable prefix, [A,y] is u-item,  is a
suffix of  and y  FOLLOW|y|().
Conversely, if  is a viable prefix, then some item is
LR(u)-valid item for  .
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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VALIDLR(u)() (or VALIDu(), for short):
      the set of all LR(u)-valid items for 

For all n  0,
  VALIDu,n() : set of items [A,y] that satisfy
     S 

rm
 n Az 

rm
  z = z   and y  FIRSTu(z)

       for some   V*  and z  *

Lemma 10.14 If in grammar G
[AB,y]VALIDu,n() and m v *,

then BP, z FIRSTu (vy)
[B,z]VALIDu,n+m+1()  .

Lemma 10.15 If in grammar G
[B,z]VALIDu,n () , n>0,

then ABP, m<n, 
[AB,y]VALIDu,m(), 

rm
n-m-1 v

and z FIRSTu (vy).

Fact 10.16 If  [AB,y]VALIDu,n()  then 
is a viable prefix and  [AB,y]VALIDu,n().
Conversely, if  [AB,y]VALIDu,n()  then 
there is a viable prefix s.t.  =  and
[AB,y]VALIDu,n().
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Theorem 10.17 A state [A,y] in  Mu(G) is ac-
cessible upon reading  iff  [A,y] is an LR(u)-
valid item for . In other words,
VALIDu()={[A,y][S,]*[A,y] in
                                                                     Mu(G)}.
Proof)
Only if) By induction on m, the length of computation

[S, ] m [A  , y] in Mu(G)
base) m=1, we have =, [A  , y] = [S, , ]

[S, , ]  VALIDu()
induction) If m>1, the computation is either

i) [S, ] = [S, ]'X m-1 [A'X, y]X
 [A  'X, y] = [A  , y], or

ii) [S, ] m-2 [A'  'A', y']  [A, y]
 [A, y]= [A, y], where
                                          yFIRSTu('y').

 By i.h., Fact 10.16(i),and Lemma 10.14(ii),
   it holds.

If) By induction on n+||, where
[A,y]  VALIDu,n().

base) n+||=0, we have [A,y]=[S, ],=
  [S, , ] is the state to which Mu(G) has -transition 
  from [S, ]
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induction) If n+||>0,
i)[A, y] = [A 'X, y]VALIDu,n(),
ii) [A, y] = [A, y]  VALIDu,n(),
where n>0.
By i.h., Fact 10.16(i), and Lemma 10.15(ii),
it holds

Let u  k:*. Then distinct items [A  , y] and
 [B  , z] exhibit an LR(u)-conflict if either

(1) = and y=z=u, or
(2) 1:, y is suffix of u, and z=uFIRSTu(y).

Fact 10.18 Distinct items [A,y] and [B,z]
exhibit an LR(u)-conflict iff

(1) the items u-items,
(2) they exhibit an LR(|u|)-conflict, and
(3) z= u.

Theorem 10.19 Let G is impossible S+S.
Then G is non-LR(k) iff  u k:*$, the $-augmented
grammar Ghas a pair of distinct u-items I and J that
exhibit an LR(u)-conflict and are mutually accessible
states in Mu(G). 
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Proof)
Only if) Assume that G (also G') is non-LR(k).
 $V* [A,y] and [B,u] in VALIDk()
that exhibit LR(k)-conflict.

S' 
rm

 * 1Ay1 
rm

 1y1 = y1, k:y1=y,

S' 
rm

 * 2Ay2 
rm

 2y2 = y2, k:y2=uFIRSTk(y)

Then uk:*$, uFIRSTu(y2)
[B,u] VALIDu()
uFIRSTk(y) implies that y has a prefix y’ s.t.
y’ is a suffix of u, uFIRSTk(y’). uFIRSTk(y)
also implies y’FIRSTk(y1), uFIRSTu(y’).
Hence [A,y] and [B,u] exhibit an LR(u)-
conflict. They accessible upon reading .
If) Assume uk:*$ and [A,y] and [B,u]
exhibit an LR(u)-conflict. They accessible upon read-
ing Then uFIRSTu(y), [A,y],  [B,u]
in VALIDu().

S' 
rm

 * 1Ay1 
rm

 1y1 = y1, yFIRSTu(y1),

S' 
rm

 * 2By2 
rm

 2y2 = y2, uFIRSTu(y2).

Here [A,k:y1],  [B,k:y2] VALIDk().
uFIRSTu(y2) implies u=|u|:y2. But u=k:y2.
uFIRSTu(y) and yFIRSTu(y1) implies 
uFIRSTu(y1). So uFIRSTk(y1).
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Lemma 10.20 The automaton Mu(G) can be con-

structed in simultaneously in space O((|u|+1)2|G|),
in time  O((|u|+1)3|G|).

Theorem 10.21 Grammar G can be tested for the 
LR(k) property simultaneously in deterministic  

space O((k+1)2|G|2) and 

in time O((k+1)3||k|G|2).

Corollary 10.22 For any fixed k, the LR(k) testing
problem PLR(k) is solvable simultaneously in deter-
ministic space O(n2) and in deterministic time
O(nk+2).

Corollary 10.23 The uniform LR(k) testing problem
PLR  is solvable simultaneously in deterministic  poly-
nomial space and in deterministic one-level exponen-
tial time when k is expressed in unary, and simulta-
neously in deterministic two-level exponential time
when k is expressed in binary.
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Nondeterministic algorithm for Non-LR(k) testing

Step 1. Check whether or not S + S is possible in G.
If yes, output "G is non-LR(k)" and halt.

Step 2. Guess a string uk:*$.
Step 3. Construct Mu(G'). Remove from Fshift the

  items [S’  $S$,] and [S’$S$,].
Step 4. Determine in Mu(G') the set A of pairs of mu-

tually accessible states.
Step5. Check whether or not the set A contains a pair

 of distinct items I, J s.t. (I, J)  FreduceFreduce,
(I, J) Fshift Freduce. If yes, output "G is non-
LR(k)" and halt. Otherwise, halt.

 Theorem 10.24 Grammar G can be tested for the
non-LR(k) property simultaneously in nondetermin-
istic space O( k+|G| ) and in time O((k+1)2 |G|2).

Corollary 10.25 For any fixed k, the non-LR(k) test-
ing problem Pnon-LR(k) is solvable simultaneously in
nondeterministic space O(n ) and in nondeterministic
time O(n 2).

Corollary 10.26 The uniform non-LR(k) testing prob-
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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lem Pnon-LR is solvable simultaneously in nondeter-
ministic  polynomial  time when k is expressed in
unary, and   in nondeterministic one-level exponen-
tial time when k is expressed in binary.

Theorem 10.27 Let G is impossible S+S.
Then G is non-SLR(k) iff  u k:*$, Ghas a pair of
distinct u-items [A,y] and [B,u] that ex-
hibit an LR(u)-conflict and are mutually accessible
states in Mu(G) and where [A] and [B]
are mutually accessible states in M(G).

Theorem 10.28 Grammar G can be tested for the
SLR(k) property simultaneously in deterministic
space O((k+1)2 |G|+|G|2) and in time  O((k+1)3

||k|G|2).

Corollary 10.29 For any fixed k, the SLR(k) testing
problem PSLR(k) is solvable simultaneously in deter-
ministic space O(n2) and in deterministic time
O(nk+2).

Theorem 10.30 Grammar G can be tested for the
non-SLR(k) property simultaneously in nondetermin-
istic space O(k+|G|) and in time O((k+1)|G|+|G|2).
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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10.2 Efficient Algorithms for LL(k) and SLL(k)
testing
The LR-transformed grammar for G is the grammar
GLR = (VP, , PLR, S), where

PLR = {A  (A, ) | A    P}
 {((A, )   | A    P}.

The size of GLR is at most 3|G|

Lemma 10.31 Let GLR  be the LR-transformed gram-
mar for G, and h a homomorphism from the rule
strings of GLR to the rule strings of G defined by:

h(A(A,)) = ,
h((A,)) = A.

If X is a symbol in V,  a string in V*, and  a rule
string in P* such that

X 
lm
    in G,

then GLR has a unique rule string ’ such that

X 
lm
 ’ in GLR and h(’) = .

Conversely, if X is a symbol in V,  a string, and ’
a rule string of GLR such that

X 
lm
 ’V* in GLR , then

X 
lm
 h(’)  in G.
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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Moreover, if X is a symbol in  V, x a string in *, A a
nonterminal in V, and  a string over the alphabet of
GLR such that

X
lm

 *xA,

then V*.

Lemma 10.32 Let G be a grammar  and GLR its LR-
transformed grammar. Then the following state-
ments hold for all k0.

(a) G is LL(k) iff GLR is LL(k).
(b) G is SLL(k) iff GLR is SLL(k).

Proof)
Assume that G is not LL(k), then

S 
lm

 * xA 
lm

 x1 
lm

 * xy1 in G,

S 
lm

 * xA 
lm

 x2 
lm

 * xy2 in G,

where 12 and k:y1=k:y2.
By def. A  (A, 1)1, (A, 1)  ,
            A  (A, 2)2, and (A, 2)  

S 
lm

 * xA 
lm

 x(A, 1)1 
lm

 x1 
lm

 * xy1 in GLR,

S 
lm

 * xA 
lm

 x(A, 2)2 
lm

 x2 
lm

 * xy2 in GLR.

   Hence GLR is not LL(k).
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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Assume that GLR is not LL(k), then
S 

lm
 * xA 

lm
 x1' 

lm
 * xy1 in GLR,

S 
lm

 * xA 
lm

 x2' 
lm

 * xy2 in GLR,

   where 1'2' and k:y1=k:y2.
1' and 2' must be of the form (A, 1)1, (A, 2)2,
   where A  1 and A  2 are rules of G.

Then V*

S 
lm

 * xA 
lm

 x1 
lm

 * xy1 in G,

S 
lm

 * xA 
lm

 x2 
lm

 * xy2 in G,

   where 12, which means G is not LL(k).

Lemma 10.33 Let GLR be the LR-transformed gram-
mar for a reduced grammar G and let k0. If GLR is
LR(k), then it is also LL(k).
Proof) Assume GLR is not LL(k), then

S 
lm

 * xA 
lm

 x(A, 1)1 
lm

 x1 
lm

 * xv1y1,

S 
lm

 * xA 
lm

 x(A, 2)2 
lm

 x2 
lm

 * xv2y2,

   where 12, k:v1y1=k:v2y2, and 1 derives v1,
           2 derives v2, and  derives y1 and y2.

S
rm

 *Ay1rm
 (A,1)1y1rm

 *(A,1)v1y1rm
 v1y1,

S
rm

 *Ay2rm
 (A,2)2y2rm

 *(A,2)v2y2rm
 v2y2.

Since k:v1y1=k:v2y2but (A,1)and  (A,2)
are distinct, GLR is not LR(k).
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For any reduced grammar G, the LR-transformed
grammar GLR is LR(k) iff G is LL(k).

Corollary 10.35 Assume only reduced grammars are
considered. Then the problem of LL(k) testing reduc-
es in linear time to the problem of LR(k) testing, and
the problem of non-LL(k) testing reduces in linear
time to the problem of non-LR(k) testing.

second approach to LL(k) testing

Analogy of MLR(u)(G)

We define MLL(u)(G) (or Mu(G)) as the FA with state
alphabet

{[A  , y] | A  P, y is suffix of u}
 {[A, y] | AN, y is suffix of u},

input alphabet V, initial state [S, ], and with set of
transitions consisting of all rules of the forms:
(a) [A, y]  [A  , y],
(b) [A  X, y]X  [A  X, z], for XV,

 zFIRSTu(Xy)
(c) [A  B, y]  [B, y], for BN.
The set of final states of Mu(G) is

Fproduce = {[A  , u] | A  P}.
String  may derive some terminal string in type (c).
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Fact 10.36 Let G be a grammar,  u*, the following
statements hold for the automaton MLL(u)(G).

(1) the number of states is at most 2(/u/+1)/G/
(2) the number of type (a) transitions is at most

  (/u/+1)/P/.
(3)  the number of type (b) transitions is at most 

  (/u/+1)2/G/.
(4)  the number of type (c) transitions is at most 

  (/u/+1)/G/.
(5) the size of the automaton is O((/u/+1)2/G/ ).

Let u  *. We say that an item [A,y] of G is
LL(u)-valid for string V* if

S 
lm

 * xA 
lm

 x = xR and yFIRSTu(R)

hold in G for some strings x* and V*.

Fact 10.37 If [A,y] is an LL(u)-valid item for 
then  is a viable suffix, [A,y] is a u-item, Ris
a suffix of , y  FIRST|y|(FOLLOW|y|(A)).
Conversely, if  is a viable suffix, then some item is
LL(u)-valid item for  , provided that the grammar is
reduced.
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We denote by VALIDLL(u)() (or VALIDu()) the set
of LL(u)-valid items for .

S 
lm

 
n
 xA 

lm
 x = xR and yFIRSTu(R)

for some x* and V*.

Lemma 10.38 If in grammar G
[AB,y]VALIDu,n() and m v *,

then BP
[B,y]VALIDu,n+m+1()  .

Lemma 10.39 If in grammar G,
[B,y]VALIDu,n () , n>0,

 then  ABP, string v in T*, m<n, 
[AB,y]VALIDu,m() and 

rm
n-m-1 v.

Lemma 10.40 If [A, y]VALIDu,n(), then

R is a viable suffix, [A, z]VALIDu,n(R).

Conversely, if [A, z]VALIDu,n() then there 

is a viable suffix s.t. =R and [A,y]
VALIDu,n(), where zFIRSTu(y).
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Theorem 10.41 A state [A,y] in  Mu(G) is ac-
cessible upon reading  iff  [A,y] is an LL(u)-
valid item for .  In other words,
 VALIDu()={[A,y][S,]*[A,y] in
Mu(G)} .

Let  u k:*$. We say that items [A1 1, y1] and
[A2 2, y2] exhibit an LL(u)-conflict if A1=A2,
12, and y1=y2=u.

Theorem 10.42 Let G is be a grammar, G’ its $-aug-
mented grammar, and k a natural number. Then G is
non-SLL(k) iff  u k:*$, and accessible states I,J in
Mu(G) that exhibit an LL(u)-conflict.
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Theorem 10.43 Let G be a grammar, G’ its $-aug-
mented grammar, and k a natural number. Then G is
non-LL(k) iff  u k:*$, a string V*, and states
[A,y1], [A,y2], [A1,u], [A2,u] in Mu(G)
such that following statements hold.

(1) [A,y1] and [A,y2] are both accessible upon 
            reading .

(2) [A1,u] is reachable from [A,y1] upon 

            reading1
R.

(3) [A2,u] is reachable from [A,y2] upon 

            reading2
R.

(4) The items [A1,u] and [A2,u] exhibit 
           an LL(u)-conflict, that is, 12.

Lemma 10.44 Given a grammar G and a string
u*, the automaton Mu(G) can be constructed in si-

multaneously in space O((|u|+1)2|G|),
in time  O((|u|+1)3|G|).

Theorem 10.45 Grammar G can be tested for the
SLL(k) property simultaneously
in deterministic space  O((k+1)2|G|)
and in time  O((k+1)3|T|k|G|).
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Corollary 10.46 For any fixed k, the SLL(k) testing
problem PSLL(k) is solvable simultaneously in deter-
ministic space O(n) and in deterministic time O(nk+1).

Theorem 10.47 Grammar G can be tested for the
non-SLL(k) property simultaneously in nondetermin-
istic space ,O( k+|G| ) and in time O((k+1)|G|).

Corollary 10.48 For any fixed k, the non-SLL(k) test-
ing problem Pnon-SLL(k) is solvable in nondeterminis-
tic time O(n).

Corollary 10.49 The uniform non-SLL(k) testing
problem Pnon-SLL is solvable in nondeterministic
polynomial  time when k is expressed in unary, and
in nondeterministic one-level exponential time when
k is expressed in binary.

Theorem 10.50 Grammar G can be tested for the
LL(k) property simultaneously
 in deterministic space O((k+1)2|G|2) and
 in deterministic time  O((k+1)4|T|k|G|2).

Theorem 10.51 Grammar G can be tested for the
non-LL(k) property simultaneously in nondetermin-
istic space O( k+|G| ) and in nondeterministic time
O((k+1)+|G|2).
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We define Mu-set(G)  as the FA with state alphabet
{[A  ,W] | A  P, WSUFFIX(u)}
 {[A, W] | AN, WSUFFIX(u)},

input alphabet V, initial state [S, ], and with set of
transitions consisting of all rules of the forms:
(a) [A, W]  [A  , W],
(b) [A  X, W]X  [A  X, FIRSTu(XW)],

for XV
(c) [A  B, W]  [B, W], for BN.
The set of final states of Mu-set(G) is
    Fproduce={[A,W]|AP,

   uWSUFFIX(u)}.

Fact 10.52 Let G=(V,,P,S) be a grammar, a string
u*, the following statements hold in the automaton
Mu-set(G).

(1) the number of states is at most 22(/u/+1)/G/
 (2) the number of type (a) transitions is at most

  2(/u/+1)/P/.
(3)  the number of type (b) transitions is at most 

  2(/u/+1)/G/.
(4)  the number of type (c) transitions is at most 

   2(/u/+1)/G/.
 (5) the size of the automaton is O(2/u//G/ ).
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Lemma 10.53 If [A, W]VALIDu-set,n(),

then R is a viable suffix and 
[A, FIRSTu(W)]  VALIDu-set,n(R).

Conversely, if [A, W’]  VALIDu-set,n() then 

there is a viable suffix s.t. =R and [A, 
W]VALIDu-set,n(), where W=FIRSTu(W).

Theorem 10.54 A state [A,W] in  Mu-set(G) is
accessible upon reading  iff   [A,W] is an
LL(u-set)-valid item for . In other words,

VALIDu-set()={[A,W][S,{}]
*[A, W] in Mu-set(G)} .

Theorem 10.55 G is non-LL(k) iff u k:*$, a string
V*, and states [A,W], [A1,W1], [A2,W2]
in Mu-set(G) s.t. following statements hold.

(1) [A,W] is accessible.
(2) [A1,W1] is reachable from [A,W] upon

reading1
R.

(3) [A2,W2] is reachable from [A,W] upon

reading2
R.

(4) The items [A1,W1] and [A2,W2] ex-
hibit an LL(u)-conflict, i.e., 12 and uW1W2.
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Lemma 10.56 The automaton Mu-set(G) can be con-

structed in simultaneously in space O(2|u||G|),  in
time  O((|u|+1)2|u||G|).

Theorem 10.57 Grammar G can be tested for the
LL(k) property simultaneously in deterministic

space O(2k|G|) and in deterministic time

 O((k+1)2k|T|k|G|).

Corollary 10.58 For any fixed k, the LL(k) testing 
problem PLL(k)is solvable simultaneously in deter-

ministic space O(n) and in deterministic time O(nk+1).

Theorem 10.59 Grammar G can be tested for the
non-LL(k) property simultaneously in nondetermin-
istic space ,O( (k+1)2|G| ) and in nondeterministic
time  O((k+1)2k |G|2).

Corollary 10.60 For any fixed k, the non-LL(k) test-
ing problem Pnon-LL(k) is solvable in nondeterministic
time O(n).
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10.3 Hardness of Uniform LR(k) and LL(k) Testing

derive lower bounds on the complexity of
uniform non-C(k) testing

P: solvable in deterministic polynomial time
NP: solvable in nondeterministic polynomial time
NE: solvable in nondeterministic 

        one level exponential time (2p(n))
PSPACE: solvable in polynomial space

A decision problem P is hard for NP (or NP-hard)
if every decision problem in NP reduces in polynomi-
al time to P.

P is complete for NP (or NP-complete) if P is in NP 
and NP-hard

NE-hard, NE-complete
PSPACE-hard, PSPACE-complete

open problem: whether or not P = NP.

P = NP iff some NP-complete problem is in P.



10. Testing Grammars for Parsability 373/8/18 10. Testing Grammars for Parsability 37

Kwang-Moo Choe PL Labs., Dept of CSKAIST

Showing NP-hardness of uniform non-C(k) testing
1) select some specific decision problem which is
    known to be NP-hard, and reduce this problem
    to uniform non-C(k) testing.
2) For any decision problem P in NP, show that
    there exists a polynomial time-bounded reduction
   of P to uniform non-C(k) testing.

Let M = (V, P) be rewriting system and Q,  and  be 
subsets of the alphabet V, qs  Q, FQ, B\, and

$V\(Q) s.t. V=Q{$}, Q=, and . 
We say that M is a Turing machine with
state alphabet Q,  input alphabet  tape symbol , 
set of actions P,  initial state qs,  set of final states F, 

blank symbol B,  and end marker $, denoted by
      M = (Q, , , P, qs, F, B, $),

if each rule in P has one of the following forms:

(a) q1a1q2a2         "print a2"

(b) q1a1a2q2              "print a2 and move to the right"

(c) dq1a1q2da2        "print a2 and move to the left"

(d) q1$ q2$             "record end of tape"

(e) q1$ q2B$               "record end of tape and extend 
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A configuration of Turing machine M is a string of 
the form
        $q$,

where  and  are tape symbol strings in *, and q is 
a state in Q.
 The string  is called the tape contents, and
1:$ is the tape symbol scanned at $q$.
Configuration $qsw$ is initial for an input string 

w*

Configuration $q$ is accepting if q is some final 
state in F.
A nonaccepting configuration to which no rule in P 
is applicable is called error configuration.
A computation of Turing machine M on input string 
w is any derivation in M from the initial configura-
tion for w.

L(M)={w*|$qsw$
M 

 *$q$ , , *,qF}
 

Turing machine M is nondeterministic if to some con-
figuration two actions are applicable. 
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Proposition 10.61 Let M be any language recognizer 
(random-access machine) with input alphabet . 
Then there exists a Turing machine M’ with input al-
phabet  such that the following statements hold for 
some natural number k.

(1) L(M) = L(M’)
(2) If M runs in time O(T(n)), 

      then M’ runs in time O(T(n)k)
(3) If M runs simultaneously in time O(T(n))
      and in space O(S(n)), then M’ runs

       simultaneously in time O(T(n)k) and

      in space O(S(n)k)
(4) If M is deterministic, then so is M’
(5) If M halts on input w, then so does M’

We shall show that the set of accepting computations 
of any Turing machine on a fixed input string can be 
represented as the intersection of two context-free 
languages. 

Let      M = (Q, , , P, qs, F, B, $).

Let C = (..., n+1) be a computation of M on w.
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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Assume C is nontrivial, meaning that n+11. Then

repr(C)=0
R
1   # 1 # 2

R    # 2 #...  n # R n+1 # #

C and repr(C) are in one-to-one correspondence with 
each other.
 We shall show that
  {repr(C)|C is a nontrivial accepting computation of 
M on w} =L(G1(M))L(G2(M,w)).

G1(M) is defined with

nonterminals : {S1, A1, B1}

terminals: Q  {$, #}
start symbol: S1

rules
1) S1 $A1$#S1 ,

2) S1 # ,

3) A1 aA1a ,  a

4) A1 1B12
R ,  12 in P, no $ in 12 

5) A1 1$#(2$)R , 1$2$ in P

6) B1 aB1a ,  a
7) B1 $#$ .
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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L(A1)={12
R R|*,12P,

                                             no $ in 12,L(B1)}

 1$#(2$)RR | *,1$2$P}

= {1$#$R2
RR|*,12P,

                                             no $ in 12}

               1$#$2
RR | *,1$2$P}

= {1$#2$R|*,12P,

                                             no $ in 12}

               1$#(2$R | *,1$2$P}

= {$#($R | *Q*,$$ in M}
L(S1)=($L(A1)$#)*#

={$$#($R$# | *Q*,$$ in M}* #

={$$#$R$# | *Q*,$$ in M}* #

={#R# | ,$*Q*$, in M}* #

={#}  {0
R
1  #1#2

R  #...n#R n+1 # # | n 0 , 

i, i+1$*Q*$ii+1 in M }

Lemma 10.62 For any Turing machine M,

L(G1(M)) = {#}  {0
R
1   # 1 # 2

R    # 

...  n # R n+1 # # | n 0 , 

i and i+1 are configurations of M 
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G2(M,w) is defined with

nonterminals : {S2, A2, B2, C, D, E}

terminals: Q  {$, #}
start symbol: S2

rules
 1) S2 $qsw#A2# ,

 2) A2 $B2$#A2 ,

 3) A2 $D ,

 4) B2 aB2a ,  a
 5) B2 qCq ,  qQ

 6) C aCa ,  a
 7) C $#$ ,
 8) DaD ,  a
 9) D qE ,  qF
10) EaE,  a
11) E $# .

L(E) =*$#

L(D) = *FL(E) = *F*$#

L(C) = {$#$R|*}
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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L(B2)={qqR / *, qQ, L(C) }

={q$#$RqR / *, qQ}

={q$#$qR / *, qQ}

={R$#$ / *Q*}

L(A2)= ($L(B2)$#)*$L(D)

= {$R$#$$# / *Q*}*$*F*$#

= {R## / $*Q*$}*$*F*$#

= {R
1   # 1 # 2

R    # 2 #...R n # R n+1 # # | n 0 , 

i is a configuration of M for all i =1,..., n, 

n+1 $*F*$}

L(S2)=$qsw$#L(A2)#

={$qsw$#R
1   # 1 # 2

R    # 2 #...R n # R n+1 # # /

    n 0, i $*Q*$, n+1 $*F*$}

Lemma 10.63 For any Turing machine M and input 
string w,

L(G2(M,w)) =  {0
R
1   # 1 # 2

R    # 2 #

...  n # R n+1 # # | n 0 , 

0 is a initial  configurations of M for w,

i is a configuration of M for all i =1,..., n, 
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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Theorem 10.64 Let M be a Turing machine and w an 
input string. Then

L(G1(M))  L(G2(M,w)) = {repr(C) | C is  a 

nontrivial accepting computation of M on w }.

Furthermore, for any natural number k  | w|+3
k:L(G1(M))  k:L(G2(M,w))   {k:repr(C) |

 C is  a nontrivial  computation of M on w }.

Moreover, if repr(C) belongs to k:L(G2(M,w)), then 

the computation C is an accepting computation.
Proof. a) Assume L(G1(M))  L(G2(M,w)).

Any string in L(G1(M)) is either # or of the form

0
R
1   # 1 # 2

R    #...  n # R n+1 # #, 

where n0, i and i+1 are conf. and i i+1.

Any string in L(G2(M,w)) is of the form

0
R
1   # 1 # 2

R    # 2 #...  m # R m+1 # # ,

where m0, 0: initial conf.,m+1: accepting conf.

i: configuration.

Clearly 
Two string can be equal if
n =m, i = i for i = 0,...,n+1. 
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Assume C be a nontrivial accepting computation of 
M on w.

repr(C)=0
R
1   # 1 # 2

R    # 2 #...  n # R n+1 # # ,

where  0: initial conf.,m+1: accepting conf.

ii+1, 0in.

repr(C) L(G1(M)), repr(C) L(G2(M,w)).

b) Let  in k:L(G1(M)k:L(G2(M,w)).

Any string in k:L(G1(M) is either k:# or of the form

k:0
R
1   # 1 # 2

R    #...  n # R n+1 # #, 

where n0, i and i+1 are conf. and i i+1.

Any string in k:L(G2(M,w)) is of the form

k:0
R
1   # 1 # 2

R    # 2 #...  m # R m+1 # # ,

where m0, 0: $qsw$, i: conf. 0im+1.

Since k > 3, k:
Since k > |w| + 3 = |0|, 0 =0.

Hence  must be of the form k:repr(C)

c) Since repr(C) is end with ##, 
if repr(C)k:L(G2(M,w)), repr(C)L(G2(M,w)),

which means that C is an accepting computation.



10. Testing Grammars for Parsability 463/8/18 10. Testing Grammars for Parsability 46

Kwang-Moo Choe PL Labs., Dept of CSKAIST

Theorem 10.65 (Harmanis, 1967) Given any Turing 
machine M and input string w, the pair(M,w) can be 
transformed in polynomial time into a pair of con-
text-free grammars (G1, G2) such that the following 

statements are logically equivalent.
(1) M accepts w.
(2) L(G1)  L(G2) 

Proof. We may assume that qsF.

     Note that if qsF then L(M)=

     set of actions {qsaqfa | a {$}}

When qsF, it follows that every accepting computa-

tion must be nontrivial. 
Choose G1=G1(M), G2=G2(M,w).

Then M accepts w iff {repr(C) | ...}  
iff L(G1)  L(G2) 

acceptance problem
Paccept: "Does Turing machine M accepts input w?"

nonemptiness of intersection problem
Pnon-:"Given two CFG G1 and  G2,

      is L(G1)  L(G2) ?"
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A grammar is s-grammar when all the rules begins 
with a terminal, and there is no pair of rules

A  a | awhere   .

A nonterminal A of a context-free grammar has the s-
property if (1) all the rules of A begin with a terminal, 
(2) there is no pair of rules A  a | a
where   .

We shall show that G1(M) and G2(M,w) can be re-

placed by two s-grammars, when M satisfies some 
additional conditions.

Consider G1(M).

For A1 the s-property is violated,

G1(M) has A1dA1d and A1dq1a1B1a2dq2 ,

where dq1a1q2da2 is an action of M.

G1
^ (M) : resulting of left factoring of G1(M).

1) rules of S1 and B1 are as in G1(M).

2) A1X[A1,X] for all X Q.

3) [A1,a1]a2[A1,a2]a1 for all a1, a2.
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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4) each rule of the form A1X1...XmB1Y1...Yn is re-

placed by 
[A1,X1]X2[A1,X1X2]

...
[A1,X1...Xm-1]XmB1[A1,X1...XmB1]

[A1,X1...XmB1]Y1[A1,X1...XmB1Y1]

...
[A1,X1...XmB1Y1...Yn-1]Yn.

Then L(G1(M)) =L(G1
^ (M)) . And

G1
^ (M) is s-grammar. 

1) S1 and B1 have s-property.

2) [A1,], where || 1, has s-property.

3) rules of [A1,q], where qQ, are the forms

[A1,q]a[A1,qa]

4) rules of [A1,a], where a, are of the forms

[A1,a]b[A1,b]a, where b or

[A1,a]q[A1,aq], where qQ.

Lemma 10.66 For any Turing machine M,
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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Lemma 10.69 Any Turing machine M = (Q,, P, 
qs, F', B, $) can be transformed in time O(| M|) into a 

Turing machine M' = (Q',, P', qs, F', B, $) such 

that the following statements hold.
(1) qs does not belong to F'.

(2) M' can maker no move out of states 
 in F'.
(3) M'  accepts only at the extreme right  
 end of its tape.
(4) L(M’) = L(M).
(5) If M is T(n) time-bounded, M' is 
 O(max{n,T(n)}) time-bounded.
(6) If M is S(n) space-bounded, M' is S(n) 
 pace-bounded.
(7) If M is simultaneously T(n) time-
 bounded and S(n) space-bounded, M' is 
 simultaneously  O(max{n,T(n)}) time-
 bounded and S(n) space-bounded.

Proof. Q’ = Q  {q’ | qF, q’Q}  {qf }

P’ = P  {qaq’a | qF, a{$}}
             {q’aaq’ | qF, a}
             {q’$qf $}

F’ = {qf }.
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Consider G2(M,w).

G2(M,w) is not LL(k) for any k.

    Observe that for any k 1, 
  A2 $B2$#A2  and  A2 $D  are rules

    FIRSTk($B2$#A2)

    = k:{R## / $*Q*$}+$*F*$#

    FIRSTk($D)=  k:$*F*$#

   intersection of the two FIRSTk contains all strings 

   in $k-1 and in $mFn, m, n 0, m+n = k - 2.

Remove the above conflict if restriction on M.
A2 $D  generates reversal of all accepting conf.

Assume M accepts only at the extreme right end
($q$, where qF). 

Then restrict L($D) = $F*$#. Remove from 
G2(M,w) all D aD, where a. 

Now every string in FIRSTk($D) begins with $q.

Another conflict, intermediate conf.  in R## de-
rived by $B2$# may contain states belonging to F.

M make no move out of a final state. Restrict 

L($B2$#A2 )={R## / $*(Q\F)*$}+$F*$#
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G2
^ (M,w) is the grammar with

nonterminals : {S2, A’2, A2, B2, C, E}

terminals: Q  {$, #}
start symbol: S2

rules
 1) S2 $qsw#A2# ,

 2) A2 $A’2 

 3) A’2 aB2a$#A2 ,  a
 4) A’2 qCq$#A2 ,  qQ\F

 5) A’2 qE,  qF

 6) B2 aB2a ,  a
 7) B2 qCq ,  qQ

 8) C aCa ,  a
 9) C $#$ ,
10) EaE ,  a
11) E $# .

Lemma 10.67 For any Turing machine M and input 
string w,

L(G2
^ (M,w)) =  {0

R
1   # 1 # 2

R    # 2 #

...  n # R n+1 # # | n 0 , 
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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0 is a initial  configurations of M for w,

i is a configuration in $*(Q\F)*$  for

all i =1,..., n, 

n+1 is a configuration in $*(Q\F)*$  }

Moreover, the grammar G2
^ (M,w) is an

s-grammar of size O( |M| +  |w|) and can be con-
structed from M and w in time O( |M| + |w|).

Theorem 10.68 Let M be a Turing machine such that 
the following statements hold.

(1) The initial state qs of M is not a final state.

(2) M can make no move out of a final state.
(3) M accepts only at the extreme right end of
      its tape.

Then for any input string w

L(G1
^ (M))  L(G2

^ (M,w)) = {repr(C) | C is  an 

accepting computation of M on w }.
Furthermore, for any natural number k  | w|+3

k:L(G1
^ (M))  L(G2

^ (M,w))   {repr(C) | C is  

a nontrivial  computation of M on w }.

Moreover, if repr(C) belongs to k:L(G2
^ (M,w)), then 
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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Theorem 10.71 The nonemptiness of intersection 
problem for s-languages is unsolvable.

G
^

(M,w) : uniting the s-grammars G1
^ (M) and

G2
^ (M,w), and SS1 | S2.

Theorem 10.72 Given any Turing machine M and in-
put string w, the pair (M,w) can be transformed in 
polynomial time into a context-free grammar G such 

that the following statements are logically equiva-
lent.

(1) M accepts w.
(2) G is ambiguous.

Proof. Let G=G
^

(M,w). G1
^ (M) and G2

^ (M,w) can 

be constructed from M and w in polynomial time.

Then so can G
^

(M,w). 

The only way  G
^

(M,w) can be ambiguous is that
S

lm
 S1lm *w,

S
lm

 S2lm *w.

sentence w exists iff M accepts w.

ambiguity problem
Pamb: "Given a context-free grammar G
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Theorem 10.74 If  C = (0 1  ...  t ) , t  1, is a 

computation of Turing machine M on input string w, 
then 

 | repr(C)|  2t (| w|+t+4) +1.

Proof.repr(C)=0
R
1   # 1 # 2

R    # .... t-1 # R t # #

Here |0| = |$qsw$| = |w| + 3.

|i||0| + t, i = 1,...,t.

 | repr(C)||0||1 #| |t-1 #| + | R t #| + 1

         2t (|0| + 1+ t) + 1 = 2t (| w|+t+4) +1

Theorem 10.75 Let M be a Turing machine such that 
the following statements hold.
  (1) The initial state qs of M is not a final state.

  (2) M can make no move out of a final state.
  (3) m accepts only at the extreme right end of its
      tape.
Further let w be an input string and assume that there 
is a natural number t  | w| such that 

(4) M makes no more than t moves on w, 
 that is, M has no computation on w with 
 length greater than t.

Then for all k  13t2the following statements are 
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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logically equivalent.
(a) M accepts w in time t.
(b) G(M,w) is ambiguous.
(c) G(M,w) is not C(k), where C(k) 
      denotes any of the grammar classes 
LR(k), LALR(k), SLR(k), LL(k), LALL(k), 
or SLL(k).

Proof. Similar to the proof of T 10.72,
a) implies b), which implies c).
Assume a) is not true.
Then M has on w no accepting computation. All
computations on w has length at most t.
Let C = (..., m+1), 0m<t, be a computation 

on.

Then |repr(C)| 2t (t+t+4) + 1 = 4t2+8t+1 13t2.

for all k13t2,
k:L(S1)k:L(S2)  {repr(C)|  C is ...} =.

k:L(S1)k:L(S2) =. Hence S has SLL(k) property. 

G
^

(M,w) has SLL(k) property. It is also LALL(k), 
LL(k), LALR(k), LR(k), and unambiguous.

A function T from the set of natural numbers to the set 
of positive natural numbers is time-constructible if 
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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Theorem 10.77 (Hunt, Szymanski and Ullman, 1975) 
Let C(k), for all k0, denote the class of SLL(k), 
LL(k), SLR(k), or LR(k) grammars. Then the problem 
of uniform non-C(k) testing is NP-complete when k is 
expressed in unary, and NE-complete when k is ex-
pressed in binary. When C(k) denotes the class of LA-
LR(k) or LALL(k) grammars, the problem of uniform 
non-C(k) testing is NP-hard when k is expressed in 
unary, and NE-hard when k is expressed in binary.
Proof.We have shown that for C(k) the uniform non-
C(k) = SLL(k), LL(k), SLR(k), LR(k), testing problem 
is in NP when k is expressed in unary.
To show that the problem is NP-hard we have to es-
tablish polynomial-time reductions to this problem 
from arbitrary decision problems in NP.
Let P be any decision problem in NP.
  polynomial p and p(n) time-bounded TM M s.t.

M accepts w iff w is a yes-instance of P.
By P 10.76 we may assume M never makes more than 
p(|w|) moves on w.
Now any instance w of P can be transformed into

(G
^

(M,w), un(13.p(|w|)2)),
where un(k) denotes the unary representation of k.
By T 10.75,
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"Given a context-free grammar G, is there a natural 
number k such that G is C(k)?"

Theorem 10.78 (Knuth, 1965; Rosenkrantz and 
Stearns, 1970) Let C(k) denote one of the grammar 
classes LR(k), LALR(k),  SLR(k), LL(k), LALL(k), or 
SLL(k). 
It is unsolvable whether or not a given context-free 
grammar G is C(k) for some k  0.
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10.4 Complexity of LALR(k) and LALL(k) testing

For any fixed k1, PLALR(k) is PSPACE-complete.

For any fixed k2, PLALL(k) is PSPACE-complete.

  NPPSPACE.

Theorem 10.79 For any fixed k  0, the problems of 
non-LALR(k) testing and LALR(k) testing are in 
PSPACE.
Proof. 
1) Q1 := Q2 := {[S’$S$, ]};

while true do begin
     if CORE(Q1) = CORE(Q2) then

           if Q1  Q2 contains a pair of distinct

          items exhibiting an LR(k)-conflict then
               output "G is non-LALR(k)" and  halt
    guess strings X and Y  V  {$, }
    Q1 := GOTO(Q1, X)

    Q2 := GOTO(Q2, Y)

end
2) By Savitch’s Theorem

PSPACE = NSPACE.
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Regular expression nonuniversality
Pnonuniv: "Given a regular expression E over V,

          is L(E)V*?"
Noncomputations of M on input w means any string 
that does not represent a valid computation of M on 
w.
We shall show that given any polynomial p, a p(n) 
space-bounded M, and w, the pair (M, w) can be 
transformed in polynomial time into a regular ex-
pression E(M, p, w) that denotes the set of those 
strings that are not representations of accepting com-
putations of M on w. 
V* \ L(E(M, p,w)) denotes accepting computation. 
Then

M accepts w iff L(E(M, p,w)) V*.

Let M = (Q, , , P, qs, F, B, $). represent 

computation (..., n) as string ...n.

any configuration i is a string in $* Q*$.

E(M) =   ($*Q*$)*(Q)V*

 ($*Q*$)*$(Q)*

 ($*Q*$)*$*$V*
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initial conf. $qsw$

E(M) =$+Q*$V*  $(Q\{qs})*$V*

$qs*(\)*$V*

For M and w =a1...an  in n, initial conf. $qsa1...an$

E3(M,w)=$qs$V*  $qs$V* ... $qsn-1$V*

 $qsn+1*$V*

 $qs\a1*$V*

 $qs\a2*$V* ...

 $qsn-1\an*$V*.

accepting conf. $q$, where qF.
E4(M)=V*$*(Q\F)*$

E1(ME(M) E3(M,w)E4(M)

denotes the set of those strings in V* that are not form
...n,  is the initial conf. i is a conf.,n is accept-

ing conf.

conf. shorter than s(|w|)
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tape length, postion of state

E6(M,s,w)= { V*$mQn$$kQl$V* | m,n,k,l0,

        0m+ns(|w|)-3, 0k+ls(|w|)-3,
        but none of conditions are satisfed:
       (a) k =m and l=n>0,
       (b) k = m +1 and l = n - 1,
       (c) k = m - 1 and l = n + 1 > 1,
       (d) k = m and l = n = 0,
       (e) k = m and l = n + 1 = 1,
       (f) k = m - 1 and l = n+ 1 = 1}

Restrict our attention to strings denoted by

(a) V*$mQn$$mQn$V*, where m0 , n > 0

(b) V*$mQn$$m+1Qn-1$V*, where m0, n > 0

(c) V*$mQn$$m-1Qn+1$V*, where m0, n > 0

(d) V*$mQn$$mQ$V*, where m0

(e) V*$mQn$$mQ$V*, where m0

(f) V*$mQn$$m-1Q$V*, where m> 0
In (a), (b), (c), m + n  s(|w|) - 3,
In (d), (e), (c), m + n  s(|w|) - 3, 

tape symbol changed
E7(M,s,w)
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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= { V*$ma*Q*$$m(\{a})*Q*$V* |     
a, 0ms(|w|)-4} ,

E7(M,s,w)

= { V*$*a+aQn$$*Q*(\{a})n$V* |     

a, 0ms(|w|)-4} ,

Apply action
Convention: q1,q2Q,  a, a1,a2 d1,d2, m0, 

P denote set of actions of M

Ea(M,s,w) = { V*$mq1a1
*$$mq2a2

*$V* |     

        ms(|w|)-4, q1a1q2a2P}

Eb(M,s,w) = { V*$mq1a1
*$$ma2q2

*$V* |     

        ms(|w|)-4, q1a1a2q2P} ,

Ec(M,s,w) = { V*$md1q1a1
*$$mq2d2a2

*$V* |     

          ms(|w|)-5, d1q1a1q2d2a2P}

Ed(M,s,w) = { V*$mq1$$mq2$V* |    

        ms(|w|)-3, q1$q2$P} ,

Ee(M,s,w) = { V*$mq1$$mq2a$V* |   
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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Theorem 10.80 Let p be a polynomial, M a Turing 
machine that runs in space p(n), and w an input 
string. Then

L(E(M,p,w)) = V*\{01 ...n | n  0, 

(0  ... , n ) is an accepting computation 

of M on w having space complexity at 
most p( | w|) },

where V is the alphabet of M. Moreover, the regular 
expression E(M,p,w) can be constructed from M and 
w in time polynomial in  | M| + | w|.

Theorem 10.81 (Stockmeyer and Meyer, 1973)
Pnonuniv, regular expression nonuniversality, is 

PSPACE-hard.
Proof. To show that Pnonuniv is PSPACE-hard

1) Choose any problem P in PSPACE,
2) establish a polynomial-time reduction of

 P to Pnonuniv.

Since P is in PSPACE it has a polynomial space-
bounded solution. There exists a polynomial p and 
p(n) space-bounded Turing machine M s.t.
M accepts input w iff w is a yes-instance of P.
By T 10.80 there exists a polynomial time-bounded 
algorithm that transforms any input string w of M 
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Establishing a polynomial-time reduction of r.e. non-
universality to non-LALR(k) testing.

r.e. nonuniversality reduces in polynomial time to 
"Given a right-linear grammar G with terminal
T and with set of rules contains only rules of 
the forms AaB and A, is L(G)T*?".

We shall show that this problem reduces in polynomi-
al time to non-LALR(k) testing.

Let k1 and G=(NT, T, P, S) be a right-linear gram-
mar. Further assume that the rules in P are of the 

forms AaB and A. Define  Ĝ (G,k) as grammar 

with nonterminals {Ŝ , E1, E2, H1, H2, H3}  N,

terminals T  {c, d, f, g, h, (Ŝ  ,S)}  P

start symbol   Ŝ

rules:Ŝ E1 | S (Ŝ  ,S)| gE2

E1aE1, for all a T,

E1H1dk | H2ck ,

E2H1ck | H2dk,

AaB(A,aB),   for all AaB in P
AH3f k(A,),   for all A in P
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Lemma 10.82 Let  be a string such that the state 
VALID0() in the LR(0) machine of the $-augmented 

grammar for Ĝ (G,k) contains a pair of distinct items 
[C  ] and [D  ],where   . Then :1 = h.
Proof. Note that one of  and  must be a suffix of 
the other, and that  and  must suffixes of .
:1 = :1 =:1.
Denote :1 by X.

XS’^ ,  Ŝ , H1, H2, H3, f, g, symbol in NT

(No rule D’Y, where Y is one of these)

XE2, (Ŝ  ,S),(A,),(A,aB), where A, B  N, a T

(No two distinct item [C  Y] and [D  Y] in 
the same state)
Xc, d

([EiHjc
mck-m] and [ElHrc

k] in the same state

implies they are equal.
XE1

([E1aE1] and [E1bE1], ab, cannot simulta-

neously be in VALID0(); [Ŝ E1] belongs only to 

VALID0($E1) and  [E1aE1]  VALID0($E1).)

Thus X = h.
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Lemma 10.83 For all 0  n  k and strings  the fol-
lowing hold for the $-augmented grammar of  

Ĝ (G,k).
(a) VALIDn() contains an item of the form 

    [C  E1, y] iff   $T*

(b) VALIDn() contains an item of the form 

    [C  A, y], A  N, iff  is of  the form $w 

where w  T* and S *wA in G.
(c) VALIDn() contains an item of the form

  [C  E2, y] iff C = Ŝ ,  =  g,  = ,
 y = $, and  = $g.

Lemma 10.84 Let 0  n  k and let  be a string s.t. 

in the $-augmented grammar of Ĝ (G,k), 

VALIDn(h)  . Then   $T*  $g.  Moreover, 

VALIDn(h) equals

(1) {[H1  h, dn], [H2 h, cn], [H3  h, f n]} 

                            if   $L(G),

(2) {[H1  h, dn], [H2  h, cn]} 

                           if   $T*\$L(G),
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Proof. VALIDn(h) can only contain the items 

[H1  h, dn], [H1  h, cn],[H2 h, cn], 

[H2 h, dn], and [H3  h, f n].

[H1  h, dn], [H2  h, cn]VALIDn(h)

 iff [CE1, y]VALIDn() iff   $T*.

[H3  h, f n]VALIDn(h) 

iff [CA, y]VALIDn(), where Ain G

iff  is of  the form $w where w  T, S *wA in G

[H1  h, cn], [H2  h, dn]VALIDn(h)

iff [C  E2, y] VALIDn() 

iff C = Ŝ ,  =  g,  = , y = $, and  = $g

  Theorem 10.85 Let G be any right-linear grammar 
with terminal alphabet T and with a set of rules con-
taining only rules of the forms AaBA .

Then for all natural numbers k 1, Ĝ (G,k) is LR(1). 

 Ĝ (G,k) is LALR(1) if L(G) = T*, and

 non-LALR(k) if L(G)  T*.
Proof. Let ’1 and ’2  be strings, [C’’’y’] in 

VALID1(’1) and [C, z] in VALID1(’2) be two 
Kwang-Moo Choe PL Labs., Dept of CSKAIST



10. Testing Grammars for Parsability 683/8/18 10. Testing Grammars for Parsability 68
distinct items. Then VALID1(’1) must contain an 

item [Ay] from which distinct C and . 
Now if VALID0(’1) =VALID0(’2) then ’1=1h, 

’2=2h. But then shows that  Ĝ (G,k) is LR(1).

it is LALR(1) if L(G) =T*. L 10.84 show that 
if L(G)T*, then it cannot be LALR(k).

Theorem 10.86 For each fixed natural number k  1, 
the problems of non-LALR(k) testing and LALR(k) 
testing are PSPACE-complete.

Theorem 10.87 For each fixed natural number k  
2, the problems  of non-LALR(k) testing and LALL(k) 
testing are PSPACE-complete.

Theorem 10.88 Grammar G  can be tested  for the  
non-LALR(k)  and non-LALL(k) properties simulta-
neously in nondeterministic space O(| w| + k) and in 

nondeterministic time O((k+1)|G| 2  2 |G| )

Theorem 10.89 The problem of uniform 
non-LALR(k), LALR(k), non-LALL(k), and LALL(k) 
testing are PSPACE-complete when k is expressed in 
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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unary. The problems of non-LALR(k) and 
non-LALL(k) testing are NE-complete when k is ex-
pressed in binary.
Kwang-Moo Choe PL Labs., Dept of CSKAIST
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Table 1: Complexity of non-C(k) testing
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free k
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NE-
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in P in P NP-
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NE-
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PSPACE
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unsol
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Table 1: Upper bounds on the complexity of non-C(k) 
testing when k  2 is fixed.

determi
nistic 
time

deter
minist

ic 
space

nondeter-
ministic 

time

size of C(k) 
parser

non-
SLL(k) O(nk+1) O(n) O(n) O(2n+2log n)

non-
LALL(k)

parser
construction
time

O(n2) O(2n+2log n) O(2n+(k+1)log n)

non-
LL(k) O(nk+1) O(n) O(n) O(2nk+1+(k+1)log n)

non-
SLR(k) O(nk+2)a

a. For (non-)SLR(2) testing an O(n3) algorithm is known.

O(n2) O(n2) O(2n+(k+1)log n)

non-
LALR(k)

parser
construction
time

O(n2) O(2n+2log n) O(2n+(k+1)log n)

non-
LR(k) O(nk+2) O(n2) O(n2) O(2nk+1+(k+1)log n)
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Table 1: Upper bounds on the Complexity of C(1) 
testing and on Parser Construction

C(1) testing
deterministic 

time

C(1)
parser

size

C(1) parser 
construction 

time

SLL(1) O(n2) O(n2) O(n2)

LALL(1) O(n2) O(2n+2logn) O(2n+3logn)

LL(1) O(n2) O(2n2+2logn) O(2n2+4logn)

SLR(1) O(n2) O(2n+2logn) O(2n+3logn)

LALR(1) O(2n+3logn) O(2n+2logn) O(2n+3logn)

LR(1) O(n2) O(2n2+2logn) O(2n2+4logn)


	10.3 Hardness of Uniform LR(k) and LL(k) Testing
	derive lower bounds on the complexity of
	uniform non-C(k) testing
	P: solvable in deterministic polynomial time
	NP: solvable in nondeterministic polynomial time
	NE: solvable in nondeterministic one level exponential time (2p(n))
	PSPACE: solvable in polynomial space
	A decision problem P is hard for NP (or NP-hard)
	if every decision problem in NP reduces in polynomial time to P.
	P is complete for NP (or NP-complete) if P is in NP and NP-hard
	NE-hard, NE-complete
	PSPACE-hard, PSPACE-complete
	open problem: whether or not P = NP.
	P = NP iff some NP-complete problem is in P.
	Step 2. Construct automaton Mk(G’) with collection of final state sets Freduce(u), uŒk:S*$, and F...
	One automaton for each specific string uŒk:T*$.
	One automaton for each specific string uŒk:S*$.
	Theorem 10.21 Grammar G can be tested for the LR(k) property simultaneously in deterministic spac...
	in time O((k+1)3 ·|S|k·|G|2).
	then "BÆwŒP
	[BÆ·w,y]ŒVALIDu,n+m+1(g) .
	Conversely, if [AÆa·wb, z]ŒVALIDu,n(d) then there is a viable suffix g s.t. d=gwR and [AÆaw·b,y] ...
	Conversely, if [AÆa·wb, W’] Œ VALIDu-set,n(d) then there is a viable suffix g s.t. d=gwR and [AÆa...
	space O(2k·|G|) and in deterministic time
	O((k+1)·2k·|T|k·|G|).
	Corollary 10.58 For any fixed k, the LL(k) testing problem PLL(k)is solvable simultaneously in de...
	Showing NP-hardness of uniform non-C(k) testing
	1) select some specific decision problem which is known to be NP-hard, and reduce this problem
	to uniform non-C(k) testing.
	2) For any decision problem P in NP, show that
	there exists a polynomial time-bounded reduction of P to uniform non-C(k) testing.
	Let M = (V, P) be rewriting system and Q, S and G be subsets of the alphabet V, qs Œ Q, FÕQ, BŒG\...
	$ŒV\(Q»G) s.t. V=Q»G»{$}, Q«G=Æ, and SÕG. We say that M is a Turing machine with state alphabet Q...
	M = (Q, S, G, P, qs, F, B, $),
	if each rule in P has one of the following forms:
	(a) q1a1Æq2a2 "print a2"
	(b) q1a1Æa2q2 "print a2 and move to the right"
	(c) dq1a1Æq2da2 "print a2 and move to the left"
	(d) q1$ Æq2$ "record end of tape"
	(e) q1$ Æq2B$ "record end of tape and extend
	work space"
	(f) dq1$ Æq2d$ "record end of tape and move to the left"
	A configuration of Turing machine M is a string of the form
	$aqb$,
	where a and b are tape symbol strings in G*, and q is a state in Q.
	The string ab is called the tape contents, and 1:b$ is the tape symbol scanned at $aqb$.
	Configuration $qsw$ is initial for an input string wŒS*
	Configuration $aqb$ is accepting if q is some final state in F.
	A nonaccepting configuration to which no rule in P is applicable is called error configuration.
	A computation of Turing machine M on input string w is any derivation in M from the initial confi...
	L(M)={wŒS*|$qsw$ﬁM *$aqb$ , a, bŒG*,qŒF}
	Turing machine M is nondeterministic if to some configuration two actions are applicable.
	Proposition 10.61 Let M be any language recognizer (random-access machine) with input alphabet S....
	(1) L(M) = L(M’)
	(2) If M runs in time O(T(n)),
	then M’ runs in time O(T(n)k)
	(3) If M runs simultaneously in time O(T(n)) and in space O(S(n)), then M’ runs
	simultaneously in time O(T(n)k) and in space O(S(n)k)
	(4) If M is deterministic, then so is M’
	(5) If M halts on input w, then so does M’
	We shall show that the set of accepting computations of any Turing machine on a fixed input strin...
	Let M = (Q, S, G, P, qs, F, B, $).
	Let C = (g0, g1, ..., gn+1) be a computation of M on w.
	Assume C is nontrivial, meaning that n+1³1. Then
	repr(C)=g0 # gR1 # g1 # g2R # g2 #... gn # gR n+1# #
	C and repr(C) are in one-to-one correspondence with each other.
	We shall show that
	{repr(C)|C is a nontrivial accepting computation of M on w} =L(G1(M)) « L(G2(M,w)).
	G1(M) is defined with
	nonterminals : {S1, A1, B1}
	terminals: Q » G » {$, #}
	start symbol: S1
	rules
	1) S1 Æ $A1$#S1 ,
	2) S1 Æ # ,
	3) A1 Æ aA1a , " aŒG
	4) A1 Æ w1B1w2R, " w1Æw2 in P, no $ in w1w2 5) A1 Æ w1$#(w2$)R ," w1$Æw2$ in P
	6) B1 Æ aB1a , " aŒG
	7) B1 Æ $#$ .
	L(B1) = {b$#$bR | bŒG*}
	L(A1)={aw1gw2RaR|aŒG*,w1Æw2ŒP,
	no $ in w1w2,gŒL(B1)}
	» {aw1$#(w2$)RaR | aŒG*,w1$Æw2$ŒP}
	= {aw1b$#$bRw2RaR|a,bŒG*,w1Æw2ŒP,
	no $ in w1w2}
	» {aw1$#$w2RaR | aŒG*,w1$Æw2$ŒP}
	= {aw1b$#(aw2b$)R|a,bŒG*,w1Æw2ŒP,
	no $ in w1w2}
	» {aw1$#(aw2$)R | aŒG*,w1$Æw2$ŒP}
	= {g$#(d$)R | g, dŒG*QG*,g$ﬁd$ in M}
	L(S1)=($L(A1)$#)*#
	={$g$#(d$)R$# | g, dŒG*QG*,g$ﬁd$ in M}* # ={$g$#$dR$# | g, dŒG*QG*,g$ﬁd$ in M}* #
	={f#yR# | f,yŒ$G*QG*$, fﬁy in M}* #
	={#} » {f0#yR1 #f1#y2R #...fn#yR n+1# # | n ³ 0 ,
	fi, yi+1Œ$G*QG*$,fiﬁyi+1 in M }
	Lemma 10.62 For any Turing machine M,
	L(G1(M)) = {#} » {f0 # yR1 # f1 # y2R #
	... fn # yR n+1# # | n ³ 0 ,
	fi and yi+1 are configurations of M
	and fi ﬁ yi+1 in M for all i = 0, ..., n }.
	Moreover, the grammar G1(M) is of size O( |M|) and can be constructed from M in time O( |M|).
	G2(M,w) is defined with
	nonterminals : {S2, A2, B2, C, D, E}
	terminals: Q » G » {$, #}
	start symbol: S2
	rules
	1) S2 Æ $qsw#A2# ,
	2) A2 Æ $B2$#A2 ,
	3) A2 Æ $D ,
	4) B2 Æ aB2a , " aŒG
	5) B2 Æ qCq , " qŒQ
	6) C Æ aCa , " aŒG
	7) C Æ $#$ ,
	8) DÆ aD , " aŒG
	9) D Æ qE , " qŒF
	10) EÆ aE, " aŒG
	11) E Æ $# .
	L(E) =G*$#
	L(D) = G*FL(E) = G*FG*$#
	L(C) = {b$#$bR| bŒG*}
	L(B2)={aqgqaR / aŒG*, qŒQ, gŒL(C) }
	={aqb$#$bRqaR / a,bŒG*, qŒQ}
	={aqb$#$(aqb)R / a,bŒG*, qŒQ}
	={dR$#$d / dŒG*QG*}
	L(A2) = ($L(B2)$#)*$L(D)
	= {$dR$#$d$# / dŒG*QG*}*$G*FG*$#
	= {gR#g# / gŒ$G*QG*$}*$G*FG*$#
	= {gR1 # g1 # g2R # g2 #...gR n# gR n+1# # | n ³ 0 ,
	gi is a configuration of M for all i =1,..., n, gn+1 Œ$G*FG*$}
	L(S2)=$qsw$#L(A2)#
	={$qsw$#gR1 # g1 # g2R # g2 #...gR n# gR n+1# # / n ³ 0, gi Œ$G*QG*$, gn+1 Œ$G*FG*$}
	Lemma 10.63 For any Turing machine M and input string w,
	L(G2(M,w)) = {g0 # gR1 # g1 # g2R # g2 #
	... gn # gR n+1# # | n ³ 0 ,
	g0 is a initial configurations of M for w,
	gi is a configuration of M for all i =1,..., n,
	gn+1 is an accepting configuration of M }
	Moreover, G2(M,w) is of size O( |M| +| w|) and can be constructed from M in time O( |M| + |w|)
	Theorem 10.64 Let M be a Turing machine and w an input string. Then
	L(G1(M)) « L(G2(M,w)) = {repr(C) | C is a nontrivial accepting computation of M on w }.
	Furthermore, for any natural number k > | w|+3
	k:L(G1(M)) « k:L(G2(M,w)) Õ {k:repr(C) |
	C is a nontrivial computation of M on w }.
	Moreover, if repr(C) belongs to k:L(G2(M,w)), then the computation C is an accepting computation.
	Proof. a) Assume FŒL(G1(M)) « L(G2(M,w)).
	Any string in L(G1(M)) is either # or of the form
	f0 # yR1 # f1 # y2R #... fn # yR n+1# #,
	where n³0, fi and yi+1 are conf. and fi ﬁyi+1.
	Any string in L(G2(M,w)) is of the form
	g0 # gR1 # g1 # g2R # g2 #... gm # gR m+1# # ,
	where m³0, g0: initial conf.,gm+1: accepting conf.
	gi: configuration.
	Clearly F ¹ #.
	Two string can be equal if
	n =m, fi = gi for i = 0,...,n+1.
	Then C = (g0 , ..., gn+1) is a nontrivial computation,
	and repr(C) = F.
	Assume C be a nontrivial accepting computation of M on w.
	repr(C)=g0 # gR1 # g1 # g2R # g2 #... gn # gR n+1# # ,
	where g0: initial conf.,gm+1: accepting conf.
	giﬁgi+1, 0£i£n.
	repr(C) ŒL(G1(M)), repr(C) ŒL(G2(M,w)).
	b) Let F in k:L(G1(M)«k:L(G2(M,w)).
	Any string in k:L(G1(M) is either k:# or of the form k:f0 # yR1 # f1 # y2R #... fn # yR n+1# #,
	where n³0, fi and yi+1 are conf. and fi ﬁyi+1.
	Any string in k:L(G2(M,w)) is of the form k:g0 # gR1 # g1 # g2R # g2 #... gm # gR m+1# # ,
	where m³0, g0: $qsw$, gi: conf. 0£i£m+1.
	Since k > 3, F ¹ k:#.
	Since k > |w| + 3 = |g0|, f0 =g0.
	Hence F must be of the form k:repr(C)
	c) Since repr(C) is end with ##,
	if repr(C)Œk:L(G2(M,w)), repr(C)ŒL(G2(M,w)),
	which means that C is an accepting computation.
	Theorem 10.65 (Harmanis, 1967) Given any Turing machine M and input string w, the pair(M,w) can b...
	(1) M accepts w.
	(2) L(G1) « L(G2) ¹ Æ
	Proof. We may assume that qsœF.
	Note that if qsŒF then L(M)=S*
	set of actions {qsaÆqfa | a ŒS»{$}}
	When qsœF, it follows that every accepting computation must be nontrivial.
	Choose G1=G1(M), G2=G2(M,w).
	Then M accepts w iff {repr(C) | ...} ¹Æ
	iff L(G1) « L(G2) ¹ Æ
	acceptance problem
	Paccept: "Does Turing machine M accepts input w?"
	nonemptiness of intersection problem
	Pnon-«:"Given two CFG G1 and G2, is L(G1) « L(G2) ¹ Æ?"
	acceptance problem is unsolvable.
	nonemptiness of intersection problem is unsolvable.
	A grammar is s-grammar when all the rules begins with a terminal, and there is no pair of rules A...
	A nonterminal A of a context-free grammar has the s- property if (1) all the rules of A begin wit...
	where b1 ¹ b2.
	We shall show that G1(M) and G2(M,w) can be replaced by two s-grammars, when M satisfies some add...
	Consider G1(M).
	For A1 the s-property is violated,
	G1(M) has A1ÆdA1d and A1Ædq1a1B1a2dq2 ,
	where dq1a1Æq2da2 is an action of M.
	G1^(M) : resulting of left factoring of G1(M).
	1) rules of S1 and B1 are as in G1(M).
	2) A1ÆX[A1,X] for all X ŒG»Q.
	3) [A1,a1]Æa2[A1,a2]a1 for all a1, a2ŒG.
	4) each rule of the form A1ÆX1...XmB1Y1...Yn is replaced by
	[A1,X1]ÆX2[A1,X1X2]
	...
	[A1,X1...Xm-1]ÆXmB1[A1,X1...XmB1]
	[A1,X1...XmB1]ÆY1[A1,X1...XmB1Y1]
	...
	[A1,X1...XmB1Y1...Yn-1]ÆYn.
	Then L(G1(M)) =L(G1^(M)) . And
	G1^(M) is s-grammar.
	1) S1 and B1 have s-property.
	2) [A1,g], where |g| ³ 1, has s-property.
	3) rules of [A1,q], where qŒQ, are the forms
	[A1,q]Æa[A1,qa]
	4) rules of [A1,a], where aŒG, are of the forms
	[A1,a]Æb[A1,b]a, where bŒG or
	[A1,a]Æq[A1,aq], where qŒQ.
	Lemma 10.66 For any Turing machine M,
	L(G1^(M)) = {#} » {f0 # yR1 # f1 # y2R #
	... fn # yR n+1# # | n ³ 0 ,
	fi and yi+1 are configurations of M
	and fi ﬁ yi+1 in M for all i = 0, ..., n }.
	Moreover, G1^(M) is an s-grammar of size O( |M|2) and can be constructed from M in time O( |M|2) .
	Lemma 10.69 Any Turing machine M = (Q,S, G, P, qs, F', B, $) can be transformed in time O(| M|) i...
	(1) qs does not belong to F'.
	(2) M' can maker no move out of states
	in F'.
	(3) M' accepts only at the extreme right
	end of its tape.
	(4) L(M’) = L(M).
	(5) If M is T(n) time-bounded, M' is
	O(max{n,T(n)}) time-bounded.
	(6) If M is S(n) space-bounded, M' is S(n)
	pace-bounded.
	(7) If M is simultaneously T(n) time-
	bounded and S(n) space-bounded, M' is
	simultaneously O(max{n,T(n)}) time-
	bounded and S(n) space-bounded.
	Proof. Q’ = Q » {q’ | qŒF, q’œQ»G} » {qf }
	P’ = P » {qaÆq’a | qŒF, aŒG»{$}}
	» {q’aÆaq’ | qŒF, aŒG}
	» {q’$Æqf $}
	F’ = {qf }.
	Consider G2(M,w).
	G2(M,w) is not LL(k) for any k.
	Observe that for any k ³1,
	A2 Æ $B2$#A2 and A2 Æ $D are rules
	FIRSTk($B2$#A2)
	= k:{gR#g# / gŒ$G*QG*$}+$G*FG*$#
	FIRSTk($D)= k:$G*FG*$#
	intersection of the two FIRSTk contains all strings
	in $Gk-1 and in $GmFGn, m, n ³0, m+n = k - 2.
	Remove the above conflict if restriction on M. A2 Æ $D generates reversal of all accepting conf.
	Assume M accepts only at the extreme right end
	($gq$, where qŒF).
	Then restrict L($D) = $FG*$#. Remove from G2(M,w) all D Æ aD, where aŒG.
	Now every string in FIRSTk($D) begins with $q.
	Another conflict, intermediate conf. g in gR#g# derived by $B2$# may contain states belonging to F.
	M make no move out of a final state. Restrict
	L($B2$#A2 )={gR#g# / gŒ$G*(Q\F)G*$}+$FG*$#
	Remove from G2(M,w) all rules B2ÆqCq.
	Partion Q into F and Q\F.
	G2^(M,w) is the grammar with
	nonterminals : {S2, A’2, A2, B2, C, E}
	terminals: Q » G » {$, #}
	start symbol: S2
	rules
	1) S2 Æ $qsw#A2# ,
	2) A2 Æ $A’2
	3) A’2 Æ aB2a$#A2 , " aŒG
	4) A’2 Æ qCq$#A2 , " qŒQ\F
	5) A’2 Æ qE, " qŒF
	6) B2 Æ aB2a , " aŒG
	7) B2 Æ qCq , " qŒQ
	8) C Æ aCa , " aŒG
	9) C Æ $#$ ,
	10) EÆ aE , " aŒG
	11) E Æ $# .
	Lemma 10.67 For any Turing machine M and input string w,
	L(G2^(M,w)) = {g0 # gR1 # g1 # g2R # g2 #
	... gn # gR n+1# # | n ³ 0 ,
	g0 is a initial configurations of M for w,
	gi is a configuration in $G*(Q\F)G*$ for
	all i =1,..., n,
	gn+1 is a configuration in $G*(Q\F)G*$ }
	Moreover, the grammar G2^(M,w) is an
	s-grammar of size O( |M| + |w|) and can be constructed from M and w in time O( |M| + |w|).
	Theorem 10.68 Let M be a Turing machine such that the following statements hold.
	(1) The initial state qs of M is not a final state.
	(2) M can make no move out of a final state.
	(3) M accepts only at the extreme right end of
	its tape.
	Then for any input string w
	L(G1^(M)) « L(G2^(M,w)) = {repr(C) | C is an accepting computation of M on w }.
	Furthermore, for any natural number k > | w|+3
	k:L(G1^(M)) « L(G2^(M,w)) Õ {repr(C) | C is a nontrivial computation of M on w }.
	Moreover, if repr(C) belongs to k:L(G2^(M,w)), then the computation C is an accepting computation
	Theorem 10.70 Given any Turing machine M and input string w, the pair(M,w) can be transformed in ...
	(1) M accepts w.
	(2) L(G1) « L(G2) ¹ Æ
	Theorem 10.71 The nonemptiness of intersection problem for s-languages is unsolvable.
	G^(M,w) : uniting the s-grammars G1^(M) and
	G2^(M,w), and SÆS1 | S2.
	Theorem 10.72 Given any Turing machine M and input string w, the pair (M,w) can be transformed in...
	(1) M accepts w.
	(2) G is ambiguous.
	Proof. Let G=G^(M,w). G1^(M) and G2^(M,w) can be constructed from M and w in polynomial time.
	Then so can G^(M,w).
	The only way G^(M,w) can be ambiguous is that
	Sﬁlm S1ﬁlm *w, Sﬁlm S2ﬁlm *w.
	sentence w exists iff M accepts w.
	ambiguity problem
	Pamb: "Given a context-free grammar G
	is G ambiguous?"
	Theorem 10.73 The ambiguity problem for context- free grammars is unsolvable.
	Theorem 10.74 If C = (g0 , g1 ... gt ) , t ³ 1, is a computation of Turing machine M on input str...
	| repr(C)| £ 2t . (| w|+t+4) +1.
	Proof.repr(C)=g0 # gR1 # g1 # g2R # .... gt-1 # gR t# #
	Here |g0| = |$qsw$| = |w| + 3.
	|gi|£|g0| + t, i = 1,...,t.
	| repr(C)|= |g0| + 2|g1 #| +...+ 2|gt-1 #| + | gR t#| + 1
	£ 2t (|g0| + 1+ t) + 1 = 2t . (| w|+t+4) +1
	Theorem 10.75 Let M be a Turing machine such that the following statements hold.
	(1) The initial state qs of M is not a final state.
	(2) M can make no move out of a final state.
	(3) m accepts only at the extreme right end of its tape.
	Further let w be an input string and assume that there is a natural number t > | w| such that
	(4) M makes no more than t moves on w,
	that is, M has no computation on w with
	length greater than t.
	Then for all k ³ 13×t2�the following statements are logically equivalent.
	(a) M accepts w in time t.
	(b) G(M,w) is ambiguous.
	(c) G(M,w) is not C(k), where C(k)
	denotes any of the grammar classes
	LR(k), LALR(k), SLR(k), LL(k), LALL(k),
	or SLL(k).
	Proof. Similar to the proof of T 10.72,
	a) implies b), which implies c).
	Assume a) is not true.
	Then M has on w no accepting computation. All
	computations on w has length at most t.
	Let C = (g0, g1, ..., gm+1), 0£m<t, be a computation on.
	Then |repr(C)| £2t (t+t+4) + 1 = 4t2+8t+1 £13t2.
	for all k³13t2,
	k:L(S1)«k:L(S2) Õ {repr(C)| C is ...} =Æ.
	k:L(S1)«k:L(S2) =Æ. Hence S has SLL(k) property. G^(M,w) has SLL(k) property. It is also LALL(k),...
	A function T from the set of natural numbers to the set of positive natural numbers is time-const...
	Proposition 10.76 Let T be any time-constructible function. Then for any T(n) time-bounded Turing...
	Theorem 10.77 (Hunt, Szymanski and Ullman, 1975) Let C(k), for all k ³0, denote the class of SLL(...
	Proof.We have shown that for C(k) the uniform non- C(k) = SLL(k), LL(k), SLR(k), LR(k), testing p...
	To show that the problem is NP-hard we have to establish polynomial-time reductions to this probl...
	Let P be any decision problem in NP.
	$ polynomial p and p(n) time-bounded TM M s.t.
	M accepts w iff w is a yes-instance of P.
	By P 10.76 we may assume M never makes more than p(|w|) moves on w.
	Now any instance w of P can be transformed into
	(G^(M,w), un(13.p(|w|)2)),
	where un(k) denotes the unary representation of k.
	By T 10.75,
	M accepts w iff G^(M,w) is non-C(13.p(|w|)2)
	Hence the transformation is a reduction of P to the problem of non-C(k) testing for k in unary.
	"Given a context-free grammar G, is there a natural number k such that G is C(k)?"
	Theorem 10.78 (Knuth, 1965; Rosenkrantz and Stearns, 1970) Let C(k) denote one of the grammar cla...
	It is unsolvable whether or not a given context-free grammar G is C(k) for some k ³ 0.
	10.4 Complexity of LALR(k) and LALL(k) testing
	For any fixed k³1, PLALR(k) is PSPACE-complete.
	For any fixed k³2, PLALL(k) is PSPACE-complete.
	NPÕPSPACE.
	Theorem 10.79 For any fixed k ³ 0, the problems of non-LALR(k) testing and LALR(k) testing are in...
	Proof.
	1) Q1 := Q2 := {[S’Æ·$S$, e]};
	while true do begin
	if CORE(Q1) = CORE(Q2) then
	if Q1 » Q2 contains a pair of distinct items exhibiting an LR(k)-conflict then
	output "G is non-LALR(k)" and halt
	guess strings X and Y Œ V » {$, e}
	Q1 := GOTO(Q1, X)
	Q2 := GOTO(Q2, Y)
	end
	2) By Savitch’s Theorem
	PSPACE = NSPACE.
	$ deterministic polynomial space-bounded partial solution for non-LALR(k) testing.
	3) This can be converted to a total solution which
	deterministic polynomial space-bounded.
	4) this total solution can be used as LALR(k) testing.
	Regular expression nonuniversality
	Pnonuniv: "Given a regular expression E over V,
	is L(E)¹V*?"
	Noncomputations of M on input w means any string that does not represent a valid computation of M...
	We shall show that given any polynomial p, a p(n) space-bounded M, and w, the pair (M, w) can be ...
	V* \ L(E(M, p,w)) denotes accepting computation. Then
	M accepts w iff L(E(M, p,w)) ¹V*.
	Let M = (Q, S, G, P, qs, F, B, $). represent
	computation (g0, g1, ..., gn) as string g0...gn.
	any configuration gi is a string in $G* QG*$.
	E1(M) = e » ($G*QG*$)*(G»Q)V*
	» ($G*QG*$)*$(G»Q)*
	» ($G*QG*$)*$G*$V*
	» ($G*QG*$)*$G* Q(G»Q)*QG*$V*
	initial conf. $qsw$
	E2(M) =$G+QG*$V* » $(Q\{qs})G*$V* »$qsG*(G\S)G*$V*
	For M and w =a1...an in Sn, initial conf. $qsa1...an$
	E3(M,w)=$qs$V* » $qsS$V*» ...» $qsSn-1$V*
	» $qsSn+1S*$V*
	» $qs(S\{a1})S*$V*
	» $qsS(S\{a2})S*$V*» ...
	» $qsSn-1(S\{an})S*$V* .
	accepting conf. $aqb$, where qŒF.
	E4(M)=V*$G*(Q\F)G*$
	E1(M) » E2(M) »E3(M,w)»E4(M) denotes the set of those strings in V* that are not form
	g0...gn, g0 is the initial conf. gi is a conf.,gn is accepting conf.
	conf. shorter than s(|w|)
	E5(M,s,w)=V*$(G»Q)s(|w|)-1(G»Q)*$V*
	tape length, postion of state
	E6(M,s,w)=» { V*$GmQGn$$GkQGl$V* | m,n,k,l³0,
	0£m+n£s(|w|)-3, 0£k+l£s(|w|)-3,
	but none of conditions are satisfed: (a) k =m and l=n>0,
	(b) k = m +1 and l = n - 1,
	(c) k = m - 1 and l = n + 1 > 1,
	(d) k = m and l = n = 0,
	(e) k = m and l = n + 1 = 1,
	(f) k = m - 1 and l = n+ 1 = 1}
	Restrict our attention to strings denoted by
	(a) V*$GmQGn$$GmQGn$V*, where m ³0 , n > 0 (b) V*$GmQGn$$Gm+1QGn-1$V*, where m ³0, n > 0 (c) V*$G...
	(e) V*$GmQGn$$GmQG$V*, where m ³0 (f) V*$GmQGn$$Gm-1QG$V*, where m> 0
	In (a), (b), (c), m + n £ s(|w|) - 3,
	In (d), (e), (c), m + n £ s(|w|) - 3,
	tape symbol changed
	E7(M,s,w)
	=» { V*$GmaG*QG*$$Gm(G\{a})G*QG*$V* | aŒG, 0£m£s(|w|)-4} ,
	E7(M,s,w)
	=» { V*$G*aG+aQGn$$G*QG*(G\{a})Gn$V* | aŒG, 0£m£s(|w|)-4} ,
	Apply action
	Convention: q1,q2ŒQ, a, a1,a2, d1,d2 ŒG, m ³0,
	P denote set of actions of M
	Ea(M,s,w) =» { V*$Gmq1a1G*$$Gmq2a2G*$V* | m£s(|w|)-4, q1a1Æq2a2œP}
	Eb(M,s,w) =» { V*$Gmq1a1G*$$Gma2q2G*$V* | m£s(|w|)-4, q1a1Æa2q2œP} ,
	Ec(M,s,w) =» { V*$Gmd1q1a1G*$$Gmq2d2a2G*$V* | m£s(|w|)-5, d1q1a1Æq2d2a2œP}
	Ed(M,s,w) =» { V*$Gmq1$$Gmq2$V* | m£s(|w|)-3, q1$Æq2$ œP} ,
	Ee(M,s,w) =» { V*$Gmq1$$Gmq2a$V* | m£s(|w|)-3, q1$Æq2a$ œP} ,
	Ef(M,s,w) =» { V*$Gmd1q1$$Gmq2d2$V* | m£s(|w|)-4, d1q1$ Æ q2d2$œP} .
	Theorem 10.80 Let p be a polynomial, M a Turing machine that runs in space p(n), and w an input s...
	L(E(M,p,w)) = V*\{g0 g1 ...gn | n ³ 0,
	(g0 , ... , gn ) is an accepting computation
	of M on w having space complexity at
	most p( | w|) },
	where V is the alphabet of M. Moreover, the regular expression E(M,p,w) can be constructed from M...
	Theorem 10.81 (Stockmeyer and Meyer, 1973) Pnonuniv, regular expression nonuniversality, is PSPAC...
	Proof. To show that Pnonuniv is PSPACE-hard
	1) Choose any problem P in PSPACE,
	2) establish a polynomial-time reduction of
	P to Pnonuniv.
	Since P is in PSPACE it has a polynomial space- bounded solution. There exists a polynomial p and...
	M accepts input w iff w is a yes-instance of P.
	By T 10.80 there exists a polynomial time-bounded algorithm that transforms any input string w of...
	Establishing a polynomial-time reduction of r.e. nonuniversality to non-LALR(k) testing.
	r.e. nonuniversality reduces in polynomial time to
	"Given a right-linear grammar G with terminal
	T and with set of rules contains only rules of the forms AÆaB and AÆe, is L(G)¹T*?".
	We shall show that this problem reduces in polynomial time to non-LALR(k) testing.
	Let k³1 and G=(N»T, T, P, S) be a right-linear grammar. Further assume that the rules in P are of...
	terminals T » {c, d, f, g, h, (S^ ,S)} » P
	start symbol S^
	rules: S^ÆE1 | S (S^ ,S)| gE2
	E1ÆaE1, for all a ŒT,
	E1ÆH1dk | H2ck ,
	E2ÆH1ck | H2dk,
	AÆaB(A,aB), for all AÆaB in P
	AÆH3f k(A,e), for all AÆe in P
	H1Æh,
	H2Æh,
	H3Æh .
	Lemma 10.82 Let g be a string such that the state VALID0(g) in the LR(0) machine of the $-augment...
	Proof. Note that one of a and w must be a suffix of the other, and that a and w must suffixes of g.
	g:1 = a:1 =w:1.
	Denote g:1 by X.
	X¹S’^, S^, H1, H2, H3, f, g, symbol in N»T
	(No rule DÆw’Y, where Y is one of these)
	X¹E2, (S^ ,S),(A,e),(A,aB), where A, B Œ N, a ŒT
	(No two distinct item [C Æ aY·b] and [D Æ wY·] in the same state)
	X¹c, d
	([EiÆHjcm·ck-m] and [ElÆHrck·] in the same state
	implies they are equal.
	X¹E1
	([E1ÆaE1·] and [E1ÆbE1·], a¹b, cannot simultaneously be in VALID0(g); [S^ÆE1·] belongs only to VA...
	Thus X = h.
	Lemma 10.83 For all 0 £ n £ k and strings g the following hold for the $-augmented grammar of G^(...
	(a) VALIDn(g) contains an item of the form [C Æ a·E1b, y] iff g Œ $T*
	(b) VALIDn(g) contains an item of the form [C Æ a·Ab, y], A Œ N, iff g is of the form $w where w ...
	(c) VALIDn(g) contains an item of the form [C Æ a·E2b, y] iff C = S^, a = g, b = e, y = $, and g ...
	Lemma 10.84 Let 0 £ n £ k and let g be a string s.t. in the $-augmented grammar of G^(G,k),
	VALIDn(gh) ¹ Æ. Then g Œ $T* » $g. Moreover, VALIDn(gh) equals
	(1) {[H1 Æ h·, dn], [H2Æ h·, cn], [H3 Æ h·, f n]}
	if g Œ $L(G),
	(2) {[H1 Æ h·, dn], [H2 Æ h·, cn]}
	if g Œ $T*\$L(G),
	(3) {[H1 Æ h·, cn], [H2 Æ h·, dn]}
	if g = $g.
	Proof. VALIDn(gh) can only contain the items
	[H1 Æ h·, dn], [H1 Æ h·, cn],[H2Æ h·, cn], [H2Æ h·, dn], and [H3 Æ h·, f n].
	[H1 Æ h·, dn], [H2 Æ h·, cn]ŒVALIDn(gh)
	iff [CÆa·E1b, y]ŒVALIDn(g) iff g Œ $T*.
	[H3 Æ h·, f n]ŒVALIDn(gh)
	iff [CÆa·Ab, y]ŒVALIDn(g), where AÆe in G
	iff g is of the form $w where w Œ T, S ﬁ*wA in G
	[H1 Æ h·, cn], [H2 Æ h·, dn]ŒVALIDn(gh)
	iff [C Æ a·E2b, y] ŒVALIDn(g)
	iff C = S^, a = g, b = e, y = $, and g = $g
	Theorem 10.85 Let G be any right-linear grammar with terminal alphabet T and with a set of rules ...
	Then for all natural numbers k ³1, G^(G,k) is LR(1).
	G^(G,k) is LALR(1) if L(G) = T*, and
	non-LALR(k) if L(G) ¹ T*.
	Proof. Let g’1 and g’2 be strings, [C’Æa’·b’,y’] in VALID1(g’1) and [CÆw·, z] in VALID1(g’2) be t...
	Now if VALID0(g’1) =VALID0(g’2) then g’1=g1h, g’2=g2h. But then shows that G^(G,k) is LR(1).
	it is LALR(1) if L(G) =T*. L 10.84 show that
	if L(G)¹T*, then it cannot be LALR(k).
	Theorem 10.86 For each fixed natural number k ³ 1, the problems of non-LALR(k) testing and LALR(k...
	Theorem 10.87 For each fixed natural number k ³ 2, the problems of non-LALR(k) testing and LALL(k...
	Theorem 10.88 Grammar G can be tested for the non-LALR(k) and non-LALL(k) properties simultaneous...
	Theorem 10.89 The problem of uniform
	non-LALR(k), LALR(k), non-LALL(k), and LALL(k) testing are PSPACE-complete when k is expressed in...
	non-LALL(k) testing are NE-complete when k is expressed in binary.

