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10. Testing Grammars for Parsability
Study the complexity of the decision problems

Pc : "Glven a context-free grammar G,
Is G a C(k) grammar?"

Pc : "Given a context-free grammar G and
a natural number k, is G a C(k) grammar?"

Here "C(k)" stand for "strong LL(k)", "LALL(k)",
"LL(k)", "SLR(k)", "LALR(k)", "LR(k)",
"non-LL(k)" or "non-LR(k)" etc.

PC(k) .k is fixed.
Pc: ks not fixed and problem parameter
called uniform C(k) testing problems

Convention
G: agrammar (V,Z,P,S)
G’: $-augmented grammar of G

N=V\X
k: a natural number

Kwang-Moo Choe PL Labs., Dept of CSKAIST



3/8/18 10. Testing Grammars for Parsability 2

10.1 Efficient Algorithms for LR(k) and SLR(Kk)
Testing

A decision problem is solvable in

deterministic polynomial time(P) if it has a
deterministic solution that runs in time O(p(n))

nondeterministic polynomial time(NP) if it has a
partial solution that runs in time O(p(n))

nondeterministic one level exponential time(N E)) If it
has a partial solution that runs in time O(2P("),
where p, g are polynomials.

Nondeterministic LR(k) machine for G Is

state alphabet: I, U {q.}, qs 1y

Input alphabet: V

Initial state: g

set of transition:
(1) gs— [S—em,€]
(i1) [A> o XB,Y]X—>[A—aXeB,y], XeV, and
(IID)[A—aeBB,y] > [B—em,Z],

BeN, ze FIRST,(By)

set of final states:
{[A—>wey] | AweP, y € k:x*}

U {[A—>0eaB,y] | AcaBeP, acs, y e k:=*}

Here 1, : the set of all k-items of G
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Theorem10.1 A state [A—aefB,y] In the nondeter-
ministic LR(k) machine of G is accessible upon read-
Ing v Iff y Is a viable prefix of G and [A—aep,y] IS
an LR(k)-valid item for y.  In other words,

{[A>aeB,y] | ggy=*[A—>0B,y]} = VALID,(y),

ver*.

The automaton obtained by making the nondetermin-
Istic LR(k) machine deterministic Is exactly the ca-
nonical LR(k) machine.

Fact 10.2 Let M be the nondeterministic LR(k) ma-
chine for G. Then
(1) M has at most /k:X* /¢ /G [+1 = O(|Z|*s /G /)
states .
(2) M has at most / P| transitions of type (i).

(3) M has at most /k:Z" /« IG | = O(|Z]* /G /)
transitions of type(ii) .
(4) M has at most /k:X* /2« |P|e/G /
= O(|Z|*« |[P]e /G /) transitions of type (iii).
(5) the size of M is O(|G|**2) or O(|Z|*« |P s /G/).
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Reduction of the size of the automaton

by introducing additional states of the form [B,z],
where Bisin N, z is a string in k:>_".

Any transition of type (iii)
[A—>aeBp,y] >[B—em,z]
IS split into two transitions :
[A—)OLOBB,y]—)[B,Z]
[B,z] >[B—em,z]

MR (G) (or My(G)) : the finite automaton
state alphabet :

{[A—>0eB.y]| A—ap € P, yek:Z*}

U{[AVY]IA € N, yek: ="}
Input alphabet : V
Initial state : [S,¢]
set of transitions :
(@) [Ay]>[A—>e0y]
(b) [A—aeXB,Y]X—>[A—>aXeB,y], for XeV
(c) [A—>aeBB,y]—[B,z], for BeN, zeFIRST,(By)

final state:
{FreduceW) | U € K:Z™} U {Fghig(U) | uek:X™},
where
Freduce(U) = {[A—>we,u] | A>weP }
Fenire(u) = {[A—aeaBy] | A»aaP € P, yek:X",
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a €X, ueFIRST,(aBy)}

Fact 10.3 The following statements hold in the au-
tomaton M (G).

(1) # of states Is at most
21K:X7 e IG [ = O(|Z]* /G /)

(2) # of type (a) transitions Is at most
K:Z1e [P =O(|Z]% /P /)

(3) # of type (b) transitions is at most
/kZ*/. G/ = O(lZlko /G /)

(4) # of type (c) transitions Is at most
k:X /2 /G = O(|Z|2ko /G /)

(5) the sizes of the final state sets Is at most
O(|Z]*« IG /).

(6) the size of the automaton M, (G) Is

O(|G]*) or O(|Z[* « /G).

Theorem 10.4 A state [A—aef,y] In M, (G) Is acces-

sible upon reading v iff y Is a viable prefix of G and
[A—>aeB,y] Is an LR(k)-valid item for y. In other
words,

{[A>asBy] | [S.ely="TA—>asBy]} = VALID(),

ver"‘.
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Mutually accessible states : both reachable from the
Initial state upon reading the same string.

Distinct k-items [A—aef3,y] and [B—we,z] of G’
exhibit an LR(k)-conflict if they exhibit, for k, a
reduce-reduce conflict or a shift-reduce conflict. i.e.
(1) B=c¢andy =2z or

(2) 1:B i1s a terminal and z is in FIRST,(By)

Theorem 10.5 Let G be a grammar in which S=¥S
IS impossible. Then G is non-LR(k) iff the $-augment-
ed grammar G’ has a pair of distinct k-items | and J
that exhibit an LR(k)-conflict and are mutually ac-
cessible states in My (G’). In other words,

G i1s non-LR(k) Iff there are distinct k-items | =

[A—>ae y] and J = [B—Be ,y], or | = [A>aeaf} ,Z]

and J = [B—we ,y] with aeZ, yeFIRST(aBz), s.t.
[S'.e]ly="1 and [S',e]y="]

hold in M (G') for some ye$V*.

Proof)

G is non-LR(K) iff for some string ye $V* ,VALID,(y)

contains a pair of distinct items 1, J that exhibit an
LR(k)-conflict. By Theorem 10.4, | and J belong to
VALID,(y) Iff they are states in M,(G’) accessible

upon reading v.
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Algorithm for testing the LR(K) property.

Step 1. Check whether or not S=+S is possible in G.
If yes, output "G is non-LR(k)" and halt.

Step 2. Construct automaton M,(G’) with collection
of final state sets Fyqg ce(U), Uek:Z™$, and
Feniri(U), uek:="$. Remove from each Fgiq(U)
the items [S*—«$S$ €] and [S’—>$Se$ €]

Step 3. Determine in M (G’) the set A of pairs of
mutually accessible states.

Step 4. Check whether or not the set A contains a pair

of distinct items 1,J such that for some uek:X"$

|, J €Frequce(U), OF 1€Frequce(U), JeFghig(U).
If yes, output "G iIs non-LR(k)" and halt.
otherwise output "G is LR(k)" and hallt.

transition of type (c)
[A—>aeBB,y]—>[B,z], for BeN, ze FIRST(By)

Given item [A—aeBp,y], determine zeFIRST,(By)

Fanire(u) = {[A—>ceaB,y] | A>aap € P, yek:X’,
a €X, ueFIRST (apy)}

for each uek:>"$, determine all item [A—aeaf,y]
In which ue FIRST,(aBy).

Kwang-Moo Choe PL Labs., Dept of CSKAIST



3/8/18 10. Testing Grammars for Parsability 8

Lemma 10.6 Any grammar G can be transformed in
time O(|G]) into a grammar Gpre:(v 2, P

pre < pre’Spre)
s.t. the following statements hold.

(1) Gpre IS In canonical two-form, so that the

rules in P, are of the forms

A—BC, A—>B, A—a.

(2) VaV e for each AeV generates in Gpre

exactly the nonempty terminal strings derived
by Ain G, I.e.

Lopre(A) = Lg (A)\ {e}, "Ae\S.

(3) foreach AcV, A eV \S that generates in

Gpre exactly the nonempty prefixes of termi-

nal strings derived by A in G, I.e.

(A,) = {xeX*|xze, xye Ls (A)}.

Gpre pre

(4) for each A—>aeP, a=g, B=e, 3 [B] eVpre\V
S.t. Lapre( [BD) = Lg (IB]) \ {&}

(5) for each Ao eP,ax¢, Bz, 3 [B],,.€V,...\V

pre pre

S.t. Lapre([Blpre) ={XeZ* Xz xy L (B)}
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Proof)
Transform G Into a canonical two-form grammar G,

= (V, .2, Py, S), where Ve V,, L5(A) = L(A)M e},

For each rule A—»af3 and nonempty strings o and 3
there Is a nonterminal [B]eV,\V such that L, ([B])

= Ls(IBDMe}

G re (Vpre T I:)pre ’ Spre)
Vire = V1 WA [Als anonterminal in V, }
ore> AlAlsanonterminal in V, }

P,.=P,U{A
U{A,,.—~>BC_ . /A—>BCisaruleinP,}

pre

pre
pre pre

U {A e By | FOr some C, A— BC Py,
C drives some terminal string}
U {Apre pre |[A—>BisaruleinP}

G satisfies (1) since G, does.
L;(A) = LGpre(A) since PIDI,E\P1 contains no rules for
the nonterminal in V.

Ay gENETaLES nonempty prefixes of L(A).
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Lemma 10.7 Given grammar G, k>0, u=a;...agex*

one can compute In space O(k2-|G|) and In time
O(k3.|G|), kxk matrix N, containing sets of symbols
of the form [B] and [B] e S-t.

N, (1)) = {[Bl|A>aBeP, a,p=e, B=7a;...a;}

{[BlprelA>apeP, a,B=e, p="a;..q5y, yeX*}
for 1 <i<j <k.

Proof)

Transformed grammar Gpre = (Vpre: Z, Ppres Spre)-

Apply general CFG recognition algorithm
N(i,J) = {A€ Vo= | A= aj...a; in Gprel
for 1 <i<j <k.
Ny(i,j) contains [B] iff [3]="a;...a; in G
iff BeV™, A>aBeP, aze, B="a;..., in G.
IQu(i,j) contains [B]pye Iff [Blpre="a;..-jy IN Gpre
iff BeV", A>apeP, aze, B="a;..qy in G.

Remove from IQU all symbol that are not of forms [B]

or [Blore-

Kwang-Moo Choe PL Labs., Dept of CSKAIST



3/8/18 10. Testing Grammars for Parsability 11

Lemma 10.8 The automaton M, (G) can be construct-

ed in time O((k+1)%+|Z|%|G).
Proof)
State set, type (a) and (b) transitions, Foqyce(U),

uek:=* take O(/=/X|G)).
type (c) tansitions
([A—aeBB,y]—[B,u], ue FIRST(BY))

casek =0
For any O-item [A—aeBf,€], add
[A—aeB,e]—[B,¢],
whenever 3 drives some terminal string
case k>0
For each string u=a;...a; ek:X" determine
[A—aeBB,y]—[B,u].
If B is nullable, add [A—oaeBf,u]—[B,u].
When | > 0, compute N
For j=1,...,l and for [B]eN(1,), add
[A—>0+BB,3j.1...ay]=>[B,U].
where aj.1...ajyek: >" and k:uy=u.
Observe that  derives ay...a;.
For all symbols [B] reeNu(l ), add
[A—)oc-BB y]—>[B u],
where yek:X" s.t. y=¢ whenever | < k.
Observe that u is a prefix of some terminal string de-
rived by B.
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Fehift(u) )
({[A—aeaB,y] | A>aea € P, yek: X",
aeX, ueFIRST (aBy)})
casek =0
Add all [A—>aeBp,e],where acX ,3 drives some ter-
minal string
casek >0
For each string u=ay...a; ek:X"
If B is nullable and | > 0 add [A—>aea B, a,...a3y],
where a,...a)yek:X" and k:uy=u.
If I=k=1 and (3 drives some terminal string add
[A—aeaP,y], where yek:Z".
When | > 0, compute N
For j=2,...,I and for [B]eN(2,)), add
[A—)ocoalﬁ, aj+1...9|y],
where aj.1...a)yek:Z" and kiuy=u.
For all symbols [B],eeN,(2,1), add

[A—)OLOal_B,y],,
where yek:X" s.t. y=¢ whenever | <Kk.

Time complexity

O(|k:="|ok3e/G/+|Z|%%6|G))

|k:X"|sk3e/G/: computation of N, ueX".
|2|2k-|G|: generation of states and transition
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Determines the pairs of mutually accessible states

Assume M is a finite automaton with state alphabet
Q, Input alphabet V, and set of transitions P.

QxQ relation:
(p,q) mutually-goes-to (p’,q’), If for some XeV
P contains the transitions pX—p’ and gX—q’.
(p,q) by-left-passes-empty (p’,q), iIf P contains
the transition p—p’.
(p,q) by-right-passes-empty (p,q’), if P contains
the transition g—q’.

mutually-accesses = (mutually-goes-to U
by-left-passes-emptyuby-right-passes-empty)*

Lemma 10.9 States p and g are mutually accessible
Iff (q.,q,) mutually-accesses (p,q), where g, Is initial

state.

Lemma 10.10 For any f.a. M, the set of pairs of mu-
tually accessible states can be determined in time

O( [M]?).
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Theorem 10.11 (LR(Kk) test using M, (G’)) Grammar

G can be tested for the LR(k) property in determinis-

tic time O((k+1)3.|G|**2).

step 1: O(|G|)

step 2: O((k+1)3+|Z|%.|G|

step 3: O(|Z[*.|G|?)

step 4: linear time

PLRr( Is solvable in deterministic polynomial time
O(n4k+2)

n, size of a problem instance, is proportional to |G|

I PLR(k)'

n=|G|+k when k Is expressed in unary.
For k in unary the uniform (non)-LR(k) testing prob-
lem Is solvable in deterministic one-level exponential

time(O(2(4” + 2) log n))
(n = log,2"

n=|G|+logk when k is expressed in binary.

For k in binary the uniform (non)-LR(K) testing prob-
lem is solvable in deterministic two-level exponential
tlme(0(2(4 2"+ 2) log n))
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A more sophisticated method for LR(K) testing

Key idea : representation of the automaton M, (G’)
as a collection of several very small automata.

One automaton for each specific string uek:>"$.
denoted by M(G’)

Let u ek:Z". Then k-item [A—oep ,y] is a u-item, if
y 1s a suffix of u.

FIRST,(B) = {yeX"| B =*yz, xy = u for some x,z}

denote the set of all suffixes of u that are prefixes
of some terminal string derived by 3

MLRrw)(G) (or My(G), for short) :
state alphabet
{[A—>0aeB y] | A—>ap eP,y is a suffix of u}
U {[Ay]| A'eN, vy is a suffix of u}
Input alphabet: V
Initial state: [S,¢]
set of transitions :
(@) [AY] = [A—ew.y]
(b) [A—aeXP Y]IX = [A—>aXep y], for XeV
(€) [[A—>0aBp .y]=>[B,z],
for BeN,zeFIRST,(By)
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set of final states : Frgqyce U Fenift, Where
Freduce = {[A—>e,U] | A>o is a rule of G}
Feonirt = {[A—aeaf ,y]JA—>aap is a rule of G,
a Is a terminal and ue FIRST (apy)}

Fact 10.12 Let ueX”, the following statements hold
In the automaton M(G).

(1) the number of states is at most 2«(/u/+1)e /G /

(2) the number of type (@) transitions is at most
(/U/+1)o /P /.

(3) the number of type (b) transitions is at most
(lu/+1)e IG /.

(4) the number of type (c) transitions is at most
(Ju/+1)% /G /.

(5) the size of the automaton is O((/u/+1)% /G /).

An item [A—aeB,y] of G Is LR(u)-valid string ye V*
If S =*6Az — dafz =yBz andy e FIRST(2)

hold in G for some strings 8 € V* and ze X~

Fact 10.13 If [A—>aeB,y] is an LR(u)-valid item for vy
then vy is a viable prefix, [A—aef3,y] IS u-item, o Is a
suffix of yand y € FOLLOW,y,(vB).

Conversely, if y I1s a viable prefix, then some item is
LR(u)-valid item for vy .
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VALID gy (v) (or VALID(y), for short):
the set of all LR(u)-valid items for vy

Forall n >0,
VALID (y) : set of items [A—a.eB,y] that satisfy

S —=ndAz — dafz =yBz andy e FIRST(z)
forsomed e V* andz e X

Lemma 10.14 If in grammar G
[A—>0a.BB,y]eVALID () and B=>"veX

then YB—weP, z eFIRST,, (vy)
[B—+0,2] € VALID 114m+1(Y) -

Lemma 10.15 If in grammar G
[B—em,z] eVALID, j, (y) , n>0,

then FA—a BBeP, m<n,
[A—>0eBB,y]€VALID, n(v), B =™,
and z eFIRST, (vy) .

Fact 10.16 If [A—aeBB,y]eVALID,, 1(y) then yw
Is a viable prefix and [A—a BeB,y]eVALID, ,(yw).
Conversely, If [A—aBeB,y]eVALID,, (6) then

there iIs a viable prefix y s.t. 8 =y and
[A—>ae B B,y]eVALID, (v ).

Kwang-Moo Choe PL Labs., Dept of CSKAIST



3/8/18 10. Testing Grammars for Parsability 18

Theorem 10.17 A state [A—>aef,y] In M,(G) Is ac-

cessible upon reading y iIff [A—aeB,y] Is an LR(u)-
valid item for y. In other words,
VALID(y)={[A—>0B,y] | [S.e]ly="[A—>0B,y] i

My(G)}-

Proof)
Only if) By induction on m, the length of computation
[S, ]y =™ [A — aeB, y] in M(G)
base) m=1, we have y=¢, [A > aef, Y] =[S, B, €]
[S, «B, €] € VALID(¢)
Induction) If m>1, the computation is either
i) [S, ely = [S, ely'X =™ [Asa'eXB, y]X
= [A > a'Xep, Y] = [A — a3, Y], Or
i) [S, ely =M [A' = aAB', y']1 = [A, V]
= [A—¢fB, Y]= [A—aep, Y], Where
yeFIRST,(B'Y").
. By I.h., Fact 10.16(i),and Lemma 10.14(ii),
It holds.
If) By induction on n+|y|, where
[A—aef,y] € VALID, »(7).
base) n+|y|=0, we have [A—a.ep,y]=[S—p, €],y=¢.
[S, «B, €] Is the state to which M(G) has e-transition

from [S, €]
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Induction) If n+|y|>0,
D[A — aeB, y] = [A = a'XeB, y]e VALID 1(y),
1) [A — e, Y] = [A—>B, y] € VALID, »(7),
where n>0.

By 1.h., Fact 10.16(i), and Lemma 10.15(ii),
It holds

Letu e k:X". Then distinct items [A — af, y] and
[B — e, z] exhibit an LR(u)-conflict if either

(1) B=¢ and y=z=u, or

(2) 1:B € Z, yissuffix of u, and z=ueFIRST ,(BY).

Fact 10.18 Distinct items [A—ae3,y] and [B—we ,Z]
exhibit an LR(u)-conflict iff

(1) the items u-items,

(2) they exhibit an LR(Ju])-conflict, and

(3) z=u.

Theorem 10.19 Let G is impossible S=7S.

Then G is non-LR(K) iff Fue k:Z*$, the $-augmented
grammar G’ has a pair of distinct u-items | and J that
exhibit an LR(u)-conflict and are mutually accessible
states in M,(G’).
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Proof)
Only if) Assume that G (also G') is non-LR(K).

Jye$V [A—aeB,y] and [B—ws ,u] in VALID,(y)
that exhibit LR(k)-conflict.

S' =" 81Ay1 =>d10Py1 = vBY1, Kiy1=Y,

S' =% 8,AY, =80y = VYo, Ky,=UeFIRST(BY)
Then uek:X™$, ue FIRST(y,)
. [B—we,u]e VALID ()
ueFIRST(By) implies that y has a prefix y’ s.t.
y’ 1s a suffix of u, ueFIRST(BY’). ueFIRST(By)
also implies y’ e FIRST,(By,), ue FIRST,(BY’).

Hence [A—aeB,y] and [B—>we ,u] exhibit an LR(u)-
conflict. They accessible upon reading vy.

If) Assume uek:Z"$ and [A—oep,y] and [B—we ,U]
exhibit an LR(u)-conflict. They accessible upon read
Ing y. Then ueFIRST,(BY), [A—aB,y], [B—we ,U]

iIn VALID(y).
S' = 81Ay1 =>d10Pyq = vBY1, YEFIRST (1),
S' =" 8,BY, =8y, = vy, UEFIRST(y)).
Here [A—aepB.kiyq], [B—we kiyo]€ VALID(y).
ueFIRST(y,) Implies u=|ul:y,. But u=k:ys.
ueFIRST,(By) and ye FIRST ,(y1) implies
ueFIRST,(BY1). So ueFIRST,(By,).
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Lemma 10.20 The automaton M (G) can be con-

structed in simultaneously in space O((|u|+1)2 |G)),
intime O((Ju|+1)3 «|G]).

Theorem 10.21 Grammar G can be tested for the
LR(K) property simultaneously in deterministic
space O((k+1)? +|G|?) and

in time O((k+1)3 o|Z%|G|?).

Corollary 10.22 For any fixed k, the LR(k) testing
problem PLR(k) IS solvable simultaneously In deter-

ministic space O(n?) and In deterministic time
O(nk+2).

Corollary 10.23 The uniform LR(k) testing problem
P, r Issolvable simultaneously in deterministic poly-

nomial space and in deterministic one-level exponen-
tial time when k Is expressed in unary, and simulta-
neously in deterministic two-level exponential time
when k Is expressed in binary.
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Nondeterministic algorithm for Non-LR(K) testing

Step 1. Check whether or not S =™ S is possible in G.
If yes, output "G i1s non-LR(k)" and hallt.

Step 2. Guess a string uek:="$.

Step 3. Construct M (G'). Remove from Fis the
items [S” — «$S$,c] and [S’—>$S$,<].

Step 4. Determine in M (G') the set A of pairs of mu-

tually accessible states.
Step5. Check whether or not the set A contains a pair
of distinct items I, J s.t. (I, J) € Frequce * Freduce:

(I, J) eFghift X Freguce: If Y€S, output "G Is non-
LR(K)" and halt. Otherwise, halt.

Theorem 10.24 Grammar G can be tested for the
non-LR(K) property simultaneously in nondetermin-

istic space O( k+ |G|) and in time O((k+1)? « |G]?).

Corollary 10.25 For any fixed k, the non-LR(k) test-
Ing problem P | rqq 1S solvable simultaneously in

nondeterministic space O(n) and in nondeterministic
time O(n?).

Corollary 10.26 The uniform non-LR(k) testing prob-
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lem P IS solvable simultaneously in nondeter-

ministic polynomial time when k is expressed in
unary, and in nondeterministic one-level exponen-
tial time when K Is expressed in binary.

Theorem 10.27 Let G is impossible S=*S.

Then G is non-SLR(K) iff Fue k:=*$, G’ has a pair of
distinct u-items [A—oef3,y] and [B—we ,u] that ex-
hibit an LR(u)-conflict and are mutually accessible
states in M,(G') and where [A—ae3] and [B—we]

are mutually accessible states in M_(G’).

Theorem 10.28 Grammar G can be tested for the
SLR(k) property simultaneously in deterministic

space O((k+1)? «|G|+|G|%) and in time O((k+1)3
|24 |G[?).

Corollary 10.29 For any fixed k, the SLR(k) testing
problem Py o IS solvable simultaneously in deter-

ministic space O(n?) and In deterministic time
O(nk+2).

Theorem 10.30 Grammar G can be tested for the
non-SLR(K) property simultaneously in nondetermin-

istic space O(k+|G|) and in time O((k+1)s|G|+|G|?).
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10.2 Efficient Algorithms for LL(k) and SLL(K)
testing

The LR-transformed grammar for G is the grammar
GLR = (VUP, 2, PLR’ S), where

Pr={A> A o)o|A—>onecP}
U{((A, o) >e|A—> o e P}.

The size of G Is at most 3:|G]

Lemma 10.31 Let G g be the LR-transformed gram-

mar for G, and h a homomorphism from the rule
strings of G i to the rule strings of G defined hy:
h(A—(A0)o) =&,
h((A,0)—¢) = A>o.
If X i1s a symbol in V, ¢ a string in V*, and & a rule
string in P* such that

X ¢ InG,
then G, g has a unique rule string =’ such that
X =4 in G gand h(r’) = =.
m

Conversely, if X Is a symbol inV, ¢ astring, and =’
a rule string of G g such that

X ﬁi’(l)ev* IN GLR : then
X5 ¢inG.
m
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Moreover, if X is a symbol in V, x astringinX", A a
nonterminal in V, and & a string over the alphabet of
GLR such that

Xﬁ*XAS,
then deV*.

Lemma 10.32 Let G be a grammar and Gy its LR-
transformed grammar. Then the following state-
ments hold for all k>0.
(a) G is LL(k) iff G g is LL(k).
(b) G is SLL(K) Iff G g IS SLL(K).
Proof)
Assume that G is not LL(k), then
S " XAd =X®18 =" Xy In G,
S =" XA X020 T Xy In G,
where m#w, and k:y;=k:y,.
By def. A > (A, 031)0)1, (A, 0)1) —> &,
A — (A, ®y)m,, and (A, ®y) > €
S =" XA =X(A, ®1)®108 =X®010 " Xyq In G,
S ﬁ* XAO ﬁX(A, (1)2)0)28 ﬁX(Dzés ﬁ* XYo In GLR'
Hence G g Is not LL(K).
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Assume that G| i Is not LL(k), then
S =% XAd =Xw1d = Xy1 IN Gy R,
S = XAd =Xw® = Xyo IN G g
where oo, and K:y,=k:y,.
1 and m, must be of the form (A, w1)®1, (A, ®5)m,
where A - ¢ and A — o, are rules of G.

Then §eV~
S =" XAd =Xw18 =" Xy In G,
m Im Im

S % XAd =Xwpd = Xy, In G,
where w1#wm,, Which means G is not LL(k).

Lemma 10.33 Let G| g be the LR-transformed gram-
mar for a reduced grammar G and let k>0. If G| r Is

LR(K), then it is also LL(K).
Proof) Assume G g Is not LL(k), then

S ﬁ* XAO ﬁX(A, (01)(018 ﬁX(DlS ﬁ* XV1Y1,

S ﬁ* XAO ﬁX(A, (02)(028 ﬁ>xw26 ﬁ* XVoYo,
where m1zm,, K:v1y1=K:v,y,, and m4 derives vy,
®, derives v,, and 6 derives y; and ys.

S YAY 1= V(A 01)01Y1 21 (A,01)V1Y 12 7V1Y 1,

S YAY =Y (A 02) 02y 272" (A 02)V2Y 272 VoY 2.
Since k:viy=k:voy, but (A,mq)—€ and (A,my)—¢€
are distinct, G, g Is not LR(k).
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For any reduced grammar G, the LR-transformed
grammar G, g Is LR(K) iff G is LL(k).

Corollary 10.35 Assume only reduced grammars are
considered. Then the problem of LL(k) testing reduc-
es In linear time to the problem of LR(k) testing, and
the problem of non-LL(k) testing reduces in linear
time to the problem of non-LR(k) testing.

second approach to LL (k) testing
Analogy of M| g,)(G)

We define M | ,y(G) (or My(G)) as the FA with state

alphabet
{[A = a3, ¥] | A— apeP, Vyis suffix of u}
U {[A, y] | AeN, vy is suffix of u},

Input alphabet V, initial state [S, €], and with set of

transitions consisting of all rules of the forms:

(@) [A Y] = [A > e, ],

(b) [A = aXeB, Y]X — [A — aeXp, z], for XeV,

e FIRST,(Xy)

(c) [A - aBep, y] — [B, Y], for BeN.
The set of final states of M,(G) Is

Foroduce = {[A > o, U] | A > weP}.
String a may derive some terminal string in type (c).
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Fact 10.36 Let G be agrammar, ueZ*, the following
statements hold for the automaton M | (,)(G).

(1) the number of states is at most 2¢(/u/+1)e /G /

(2) the number of type (a) transitions Is at most
(/U/+1)o /P /.

(3) the number of type (b) transitions Is at most
(/u/+1)% /G /.

(4) the number of type (c) transitions is at most
(lu/+1)e IG /.

(5) the size of the automaton is O((/u/+1)% /G /).

Let u e . We say that an item [A—oeB,y] of G is
LL(u)-valid for string yeV™ if
S = XA3 =xaBd = xay® and yeFIRST,(y%)

hold in G for some strings xeX and eV

Fact 10.37 If [A—aef,y] Is an LL(u)-valid item for vy

then v is a viable suffix, [A—>aeB,y] is a u-item, BR is
Conversely, if y Is a viable suffix, then some item Is

LL(u)-valid item for y , provided that the grammar is
reduced.
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We denote by VALID | (;)(v) (or VALID(y)) the set
of LL(u)-valid items for y.

n _ R R
S = XAd =>xopd = xay" and yeFIRST(y")
for some xeX and eV .

Lemma 10.38 If in grammar G
[A—>aBeB,y]eVALID, () and a="veX

then "B—sweP
[B—>e0y]€VALID, psmea(y) -

Lemma 10.39 If in grammar G,

[B—em,y]eVALID , (v) , n>0,

then 7 A>aBBeP, string v in T*, m<n,
[A—>aBeB,y]eVALID, 1(y) and a ="M v,

Lemma 10.40 If [A—>aweB, y] € VALID, (y), then
yoRis a viable suffix, [A—oewp, ] e VALID, n(yo©).
Conversely, Iif [A—>aew, zZ]eVALID,, ,(5) then there

is a viable suffix y s.t. 5=yo" and [A—>amsp,y]
VALID, (y ), where ze FIRST (o).

Kwang-Moo Choe PL Labs., Dept of CSKAIST



3/8/18 10. Testing Grammars for Parsability 30

Theorem 10.41 A state [A—aef3,y] In M(G) Is ac-

cessible upon reading y iff [A—oef,y] Is an LL(u)-
valid item for y. In other words,
VALID (y)={[A—asB.y] | [S.ely="[A>aBy] in

My(G)s5 .

Let ue k:X'$. We say that items [A; ey, y;] and
[A, —>em5, Vo] exhibit an LL(u)-conflict if A;=A,,
0177, and Y1=Yo=U.

Theorem 10.42 Let G is be a grammar, G’ its $-aug-
mented grammar, and k a natural number. Then G is

non-SLL(K) iff Fue k:=*$, and accessible states I,J in
M, (G’) that exhibit an LL(u)-conflict.
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Theorem 10.43 Let G be a grammar, G’ its $-aug-
mented grammar, and k a natural number. Then G is

non-LL(k) iff “ue k:£*$, a string yeV*, and states
[Ayd. [AYy2], [A—>eo0p,ul, [A—>empu] In My(G')

such that following statements hold.
(1) [A,y1] and [A,y,] are both accessible upon

reading v.
(2) [A—ewq,U] Is reachable from [A,y{] upon

reading oq".

(3) [A—ew,,u] Is reachable from [A,y,] upon

reading o,".

(4) The items [A—ewq,u] and [A—«m,,u] exhibit
an LL(u)-conflict, that Is, ®q=w,.

Lemma 10.44 Given a grammar G and a string
ueX*, the automaton M (G) can be constructed in si-
multaneously in space O((Ju|+1)? «|G]),

intime O((Ju|+1)3 «|G)).

Theorem 10.45 Grammar G can be tested for the
SLL(K) property simultaneously

in deterministic space O((k+1)? «|G|)
and in time O((k+1)3 «|T[%|G]).

Kwang-Moo Choe PL Labs., Dept of CSKAIST



3/8/18 10. Testing Grammars for Parsability 32

Corollary 10.46 For any fixed k, the SLL(k) testing
problem Py | y Is solvable simultaneously in deter-

ministic space O(n) and in deterministic time O(n*+?).

Theorem 10.47 Grammar G can be tested for the
non-SLL(k) property simultaneously in nondetermin-

Istic space ,O( k+ |G| ) and in time O((k+1)«|G|).

Corollary 10.48 For any fixed k, the non-SLL(K) test-
Ing problem Pnon_SLL(k) IS solvable In nondeterminis-

tic time O(n).

Corollary 10.49 The uniform non-SLL(k) testing
problem P_.. ¢, Is solvable in nondeterministic

polynomial time when Kk Is expressed in unary, and
In nondeterministic one-level exponential time when
K Is expressed in binary.

Theorem 10.50 Grammar G can be tested for the
LL(k) property simultaneously

in deterministic space O((k+1)? «|G|?) and
in deterministic time O((k+1)* | T[%|G|?).

Theorem 10.51 Grammar G can be tested for the
non-LL(k) property simultaneously in nondetermin-

Istic space O( k+ |G| ) and in nondeterministic time
O((k+1)+|G]?).
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We define M_4+(G) as the FA with state alphabet
{[A > asB,W] | A > apeP, WSUFFIX(u)}
U {[A, W] | AeN, WcSUFFIX(u)},

Input alphabet V, initial state [S, €], and with set of

transitions consisting of all rules of the forms:

(@) [A, W] > [A > me, W],

(b) [A > aXeB, W]X — [A = aeXp, FIRST (XW)],
for XeV

(c) [A — aBep, W] — [B, W], for BeN.

The set of final states of M,_sc(G) IS

Fproduce:{[A—xo-,W] |A—>weP,

ue W=SUFFIX(u)}.

Fact 10.52 Let G=(V,%,P,S) be a grammar, a string
ueX*, the following statements hold in the automaton

Mu-set(G)-
(1) the number of states is at most 22V¥/+1). /G /
(2) the number of type (a) transitions Is at most
2(/LI/+1). P/,
(3) the number of type (b) transitions is at most

20U+, Gy,
(4) the number of type (c) transitions is at most

2L, 1),
(5) the size of the automaton is O(2/Ye /G/).
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Lemma 10.53 If [A—>awmeB, W] € VALID get n(7),

then yoR is a viable suffix and
[A—>0ewB, FIRST (@W)] € VALID, st n(yo0").

Conversely, If [A—>oaewB, W] € VALID 4t 1(8) then

there is a viable suffix y s.t. §=yo" and [A—>awsp,
W] €VALID et n(v ), Where W=FIRST,(oW).

Theorem 10.54 A state [A—>aeB,W] In M _sct(G) IS

accessible upon reading y iff [A—aep,W] Is an
LL(u-set)-valid item for y. In other words,

VALID,,_¢et(v)={[A—>0tsf,W] | [S {e}Ty
=" [A—aeB, W] InM_( G)} .

Theorem 10.55 G is non-LL(K) iff Fue k:=*$, a string
yeV*, and states [A,W], [A—>em,W ], [A>em,,W,]

In My.t(G') s.t. following statements hold.

(1) [A,W] Is accessible.
(2) [A—>ew1,W ] Is reachable from [A,W] upon

reading oq".

(3) [A—>ew,,W5] Is reachable from [A,W] upon

reading o,".

(4) The items [A—ew1,W;] and [A—ew»,,W>] ex-
hibit an LL(u)-conflict, i.e., ®#®, and ue W W,
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Lemma 10.56 The automaton M ...(G) can be con-

u-set
structed in simultaneously in space O(2/' «|G]), in
time O(([u]+1)e2!Ule|G]).

Theorem 10.57 Grammar G can be tested for the
LL(k) property simultaneously in deterministic

space O(2%|G|) and in deterministic time
O((k+1)e2%e| T[Ke|G]).

Corollary 10.58 For any fixed k, the LL(k) testing
problem P | yis solvable simultaneously in deter-

ministic space O(n) and in deterministic time O(n*+?).

Theorem 10.59 Grammar G can be tested for the
non-LL(k) property simultaneously in nondetermin-

istic space ,0( (k+1)% |G|) and in nondeterministic
time O((k+1)e2%+ |G[?).

Corollary 10.60 For any fixed k, the non-LL(k) test-
Ing problem P ron-LL() IS solvable in nondeterministic

time O(n).
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10.3 Hardness of Uniform LR(k) and LL(k) Testing

derive lower bounds on the complexity of
uniform non-C(k) testing

P: solvable in deterministic polynomial time
NP: solvable in nondeterministic polynomial time
NE: solvable in nondeterministic

one level exponential time (2P(")
PSPACE: solvable in polynomial space

A decision problem P is hard for NP (or NP-hard)
If every decision problem in NP reduces in polynomi-
al time to P.

P is complete for NP (or NP-complete) if P is in NP
and NP-hard

NE-hard, NE-complete
PSPACE-hard, PSPACE-complete

open problem: whether or not P = NP.

P = NP iff some NP-complete problem is in P.

Kwang-Moo Choe PL Labs., Dept of CSKAIST



3/8/18 10. Testing Grammars for Parsability 37

Showing NP-hardness of uniform non-C(Kk) testing

1) select some specific decision problem which is
known to be NP-hard, and reduce this problem
to uniform non-C(k) testing.

2) For any decision problem P in NP, show that
there exists a polynomial time-bounded reduction
of P to uniform non-C(k) testing.

Let M = (V, P) be rewriting systemand Q, > and I" be

subsets of the alphabet V, gs € Q, FcQ, BeI'\Z, and

$cV\(QUID) s.t. V=QUI'U{$}, QI'=, and ET.

We say that M is a Turing machine with

state alphabet Q, Input alphabet X tape symbol I

set of actions P, initial state q¢, set of final states F,

blank symbol B, and end marker $, denoted by
M=(Q,2TI,Pq,FB,3),

If each rule in P has one of the following forms:

(@) q1a;>Qpa;  “printay”

(b) qa;—a,0, "print a, and move to the right"
(c) dgia;—0qyda, "print a, and move to the left"
(d) 9:$ —0,% "record end of tape"

(e) 91$ —>0,B% "record end of tape and extend
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A configuration of Turing machine M is a string of
the form

$aqps,

where oo and 3 are tape symbol strings in I, andqis
a state in Q.

The string a3 Is called the tape contents, and

1:B8% is the tape symbol scanned at $a.qp$.
Configuration $q.w$ is initial for an input string

*

weX

Configuration $o.qp$ is accepting if g is some final
state in F.

A nonaccepting configuration to which no rule in P
Is applicable is called error configuration.

A computation of Turing machine M on input string
w Is any derivation in M from the initial configura-
tion for w.

L(M)={weX"|$qw$=>"$aap$ , o, Bel,qeF}

Turing machine M is nondeterministic if to some con-
figuration two actions are applicable.
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Proposition 10.61 Let M be any language recognizer

(random-access machine) with input alphabet .
Then there exists a Turing machine M’ with input al-

phabet X such that the following statements hold for
some natural number k.

(1) L(M) = L(M’)

(2) If M runs in time O(T(n)),
then M’ runs in time O(T(n)k)

(3) If M runs simultaneously in time O(T(n))
and in space O(S(n)), then M’ runs
simultaneously in time O(T(n)¥) and
in space O(S(n)¥)

(4) If M is deterministic, then so is M’

(5) If M halts on input w, then so does M’

We shall show that the set of accepting computations
of any Turing machine on a fixed input string can be

represented as the intersection of two context-free
languages.

let M=(Q,%TI,PaqsFB,$).
Let C = (vo, 71, ---» Yn+1) D€ @ computation of M on w.
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Assume C is nontrivial, meaning that n+1>1. Then
repr(C)=yo #15 #y1 #v5 #yp#.. Yn#yner ##

C and repr(C) are in one-to-one correspondence with
each other.

We shall show that

{repr(C)|C is a nontrivial accepting computation of

M on w} =L(G1(M)) M L(G,(M,w)).

G41(M) is defined with
nonterminals : {S1, Aq, B1}

terminals: Q U T U {$, #}
start symbol: S;

rules

1) Sy > SA$#S,

2) Sy > #,

3) Ay > aAa, Vael

4) A{ > ©1B105 , ¥V 0150, in P, no $ in o0,
5) A; > ,$#(0,$)7 ¥V 0,;$—>0,$ in P

6) B > aBja, Vael

7)B; —> $#%.

Kwang-Moo Choe PL Labs., Dept of CSKAIST



3/8/18 10. Testing Grammars for Parsability 41

L(A)={amyos ol|oel* ov;—>n,eP,
no % in mym,,yeL(Bq)}
U {00 $#(,9)Ral | ael™* 0,$>w,$cP}
= {ow PSSP R0, "al|a,Bel™* v, —>m,eP,
no$in oim,}
U {oo 3o, ol | ael™* 0,$—>w0,$cP}
= {amBSH(0w.pS) o, Bel™* 0w, P,
no$in mjw,}
U {00 $#(0m.,$)R | ael™*,0;$>m,$eP}
= {y$#(S$)R | v, SeT*Qr* y$=>5$ in M}
L(S{)=($L(A)$#)*#
={$y$H(BS)R$# | v, SI*QI*,y$=>58$ in M}* #
={$y$HSORSH | v, SeT*QI* y$=8% in M}* #
={op#yR# | ¢,y e$T*QI*$, dp=y in M}* #
={#} U {0oty O S Onftyies ##|n20,
Oy Wi+1€3*QI™*3$,0i=> i1 INM }
Lemma 10.62 For any Turing machine M,
LGy (M) = {# U {oo # Wi # g1 # y5 #
. On# YR ##[N20,

¢; and ¢ are configurations of M
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G,(M,w) is defined with
nonterminals : {S,, A), B, C, D, E}
terminals: Q U T U {$, #}
start symbol: S,

rules

1) S; > $gqWHAL#

2) A2 —> $Bz$#A2 ’

3)A, > 3D,

4) B, »> aBja, V ael

5) B, —>qCq, vV qeQ

6) C > aCa, Vael

7 C— $#%,

8) D—abD, VvV ael'

9D —»>qgE, V qeF

10) E— aE, V ael

11)E > $#.

L(E) =" $#
L(D)=T"FL(E) =T FI $#
L(C) = {pSH$p"| pel}
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L(Bo)={aqyqe” / ael”, qeQ, yeL(C) }
={aqp$#SpRaal / o,pel”, qeQ}
={00p$#$(aqp)”/ o.Bel”, qeQ}
={5R$#$5 / 5 QI '}

L(A,)= ($L(B,)$#) $L(D)
= {$5R$#$5$# / ST QI Y $I FI $#
= {yRaty#t [ ye ST QI $Y ST FI $#
={F #y#ys #yat.y #1541 ##(n20,

vj IS a configuration of M for all 1 =1,..., n,
VYool €S0 FL$}

L(S,)=$qW$HL(A,)#
={SqW$HyT #y  #ys Hyp oy #yaey HE

n>0,v e$ QI $, yppq €S FI" $}

Lemma 10.63 For any Turing machine M and input
string w,

L(Go(MW)) = {yo#7v7 #y1#75 #yp#

Y #YRe ##| N0,

vo IS a Initial configurations of M for w,

vj IS a configuration of M for all 1 =1,..., n,
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Theorem 10.64 Let M be a Turing machine and w an
Input string. Then

L(G1(M)) N L(Gy(M,w)) = {repr(C) | Cis a
nontrivial accepting computation of M on w }.

Furthermore, for any natural number k > | w|+3
kK:L(G1(M)) N k:L(Gy(M,w)) < {k:repr(C) |
C is a nontrivial computation of M on w }.

Moreover, if repr(C) belongs to k:L(G,(M,w)), then

the computation C is an accepting computation.
Proof. a) Assume ®eL(G{(M)) N L(G,(M,w)).

Any string in L(G1(M)) is either # or of the form
do# Wi H O # S H#o Gpt ey H#E

where n>0, ¢; and ;1 are conf. and ¢; =4 1.
Any string in L(G,(M,w)) is of the form

Yo# YT #y1#Ys #HypHe mH T B,

where m>0, yq: initial conf.,y41: accepting conf.
yi: configuration.

Clearly @ = #.
Two string can be equal if

n=m, ¢j=1y; for1 =0,...,n+1.
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Assume C be a nontrivial accepting computation of
M on w.

repr(C)=yo #73 #y1 #75 #v2#.. m#VRer ##,
where yo: Initial conf.,y,,+1: accepting conf.
Vi=Yi+1, 0<ISn.

repr(C) eL(G1(M)), repr(C) eL(G,(M,w)).

b) Let @ in kiL(G{(M)nk:L(G,(M,w)).

Any string In k:L(G¢(M) is either k:# or of the form
Kido # WS # b # w5 #. dn#yleg #H#

where n>0, ¢; and ;¢ are conf. and ¢; =y, 1.
Any string in k:L(G,(M,w)) Is of the form

Kiyo #95 #y1 #75 #yo#. Ym# Ve #H,
where m>0, y4: $q.w$, yi: conf. 0<i<m+1.

Since k > 3, @ = k:#.
Since k > |w| + 3 = |yg|, dg =70
Hence @ must be of the form k:repr(C)

c) Since repr(C) Is end with ##,
If repr(C) ek:L(G,(M,w)), repr(C) eL(G,(M,w)),
which means that C is an accepting computation.
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Theorem 10.65 (Harmanis, 1967) Given any Turing
machine M and input string w, the pair(M,w) can be
transformed in polynomial time into a pair of con-

text-free grammars (G, G,) such that the following

statements are logically equivalent.
(1) M accepts w.

(2) L(G)) N L(G,) # &
Proof. We may assume that gs¢F.
Note that if g.eF then L(M)=X"
set of actions {q;a—0sa | a eZ{$}}

When g;¢F it follows that every accepting computa-

tion must be nontrivial.
Choose GlzGl(M), GZZGz(M,W).

Then M accepts w iff {repr(C) | ...} #J
Iff L(G1) N L(Gy) # D

acceptance problem
Paccept: "Does Turing machine M accepts input w?"

nonemptiness of intersection problem
Pnon-~: Given two CFG G4 and G,,

is L(Gy) N L(G,) = &7?"
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A grammar is s-grammar when all the rules begins
with a terminal, and there is no pair of rules

A—> aBI | aﬁz, where Bl 7 Bz.

A nonterminal A of a context-free grammar has the s-
property if (1) all the rules of A begin with a terminal,

(2) there is no pair of rules A — a3 | aB,
where B; # [3,.

We shall show that G,(M) and G,(M,w) can be re-

placed by two s-grammars, when M satisfies some
additional conditions.

Consider G{(M).
For A, the s-property is violated,

G41(M) has A;—dA,d and A;—dqqa,Ba,dq, ,
where dq,a;—(,da, is an action of M.

él (M) : resulting of left factoring of G{(M).
1) rules of S; and B, are as in G{(M).

2) Aj—>X[A,X] for all X eT"UQ.
3) [A1,a1]—as[Aq,a0]ay for all a4, as el
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4) each rule of the form A;—>X;..X,B1Y1...Y, IS re-

placed by
[A1.X1]>Xo[A1,X1X5]

[A1 X1 X1l > XmB1[A1, X1 XiyB1]
[Ap X1 XmnB11—=Y1[A1 X1 XmB1 4]

[A1 X1 XB1Y1...Yn ]2y,

Then L(G4(M)) =L(G; (M)) . And

él (M) Is s-grammar.

1) S; and B4 have s-property.

2) [Aq,v], where |y| > 1, has s-property.

3) rules of [Aq,q], where qeQ, are the forms
[A1,0]—>a[Aq,0a]

4) rules of [Aq,a], where a<T are of the forms
[A{,a]—>b[Aq,b]a, where beT or
[A,a]—>q[Aq,aq], where qeQ.

Lemma 10.66 For any Turing machine M,
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Lemma 10.69 Any Turing machine M = (Q,2, I, P,
s, F', B, $) can be transformed in time O(| M|) into a

Turing machine M' = (Q",.%, T, P', q¢, F', B, $) such

that the following statements hold.
(1) g5 does not belong to F'.

(2) M' can maker no move out of states
in F'.

(3) M' accepts only at the extreme right
end of its tape.

(4) L(M’) = L(M).

(5) If M is T(n) time-bounded, M' is
O(max{n,T(n)}) time-bounded.

(6) If M is S(n) space-bounded, M" is S(n)
pace-bounded.

(7) If M is simultaneously T(n) time-
bounded and S(n) space-bounded, M" is
simultaneously O(max{n,T(n)}) time-
bounded and S(n) space-bounded.

Proof. Q’=Qu {q’ | qeF g’ ¢QuI} u {gs }
P’=Pu{ga—Qg’a| geF acT'U{$}}
v {g’a—aq’ | geF, ael’}
U {q’$—>0q; $}
F = {0 }
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Consider G,(M,w).
G,(M,w) is not LL(k) for any k.
Observe that for any k >1,
A, —> $B-$#A, and A, — $D are rules
FIRST, ($B,$#A,)
= k:{yRttytt [ ye$T QI SV ST FI $#
FIRST ($D)= k:$I" FI" $#
Intersection of the two FIRST, contains all strings
in $T'! and in $r™FI™, m, n >0, m+n =k - 2.

Remove the above conflict if restriction on M.

A, — $D generates reversal of all accepting conf.
Assume M accepts only at the extreme right end
($yg$, where qeF).

Then restrict L($D) = $FI" $#. Remove from
G,(M,w) all D — aD, where a€r.

Now every string in FIRST,($D) begins with $qg.
Another conflict, intermediate conf. y In yR#y# de-
rived by $B,$# may contain states belonging to F.
M make no move out of a final state. Restrict

L($B,$#A, )={y #ty#t | ye$T (Q\F) $} $FL $#
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éz (M,w) is the grammar with
nonterminals : {Sy, A’», Ay, B, C, E}

terminals: Q U T U {$, #}
start symbol: S,

rules

1) S; = $qWHAL#

2) A, —> $A’,

3) A’y — aBoa$#A, Vael
4) A’y — qCq$#A, V qeQ\F
5) A’ > QE, V qeF

6) B, > aB,a, V ael'
7)B, > qCq, V qeQ

8) C »>aCa, Vael

9) C > $#9%,

10) E—> aE, V ael
11)E > $#.

Lemma 10.67 For any Turing machine M and input
string w,

N
L(Gy (Mw)) = {yo#YS #yr #Y5 #y,#
YR #H#|N20,
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Yo IS a Initial configurations of M for w,

vi is a configuration in $I” (Q\F)["'$ for
alli1=1,..., n,
Yn+1 IS @ configuration in $T”(Q\F)T™'$ }

Moreover, the grammar éz (M,w) Is an

s-grammar of size O( |M| + |w|) and can be con-
structed from M and w Iin time O( M| + |w)).

Theorem 10.68 Let M be a Turing machine such that
the following statements hold.
(1) The initial state g of M Is not a final state.

(2) M can make no move out of a final state.
(3) M accepts only at the extreme right end of
Its tape.

Then for any input string w

LG, (M)) AL(G, (Mw))={repr(C)|Cis an
accepting computation of M on w }.
Furthermore, for any natural number k > | w|+3

k:L(Gy (M) NL(G, (Mw)) < {repr(C)| Cis
a nontrivial computation of M onw }.
Moreover, if repr(C) belongs to k:L(éZ (M,w)), then
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Theorem 10.71 The nonemptiness of intersection
problem for s-languages is unsolvable.

G (M,w) : uniting the s-grammars él (M) and

G, (Mw), and S—S; | S,.

Theorem 10.72 Given any Turing machine M and in-
put string w, the pair (M,w) can be transformed In
polynomial time into a context-free grammar G such

that the following statements are logically equiva-
lent.

(1) M accepts w.

(2) G Is ambiguous.

Proof. Let G=G (M,w). él (M) and éz (M,w) can
be constructed from M and w in polynomial time.
Then so can G (M,w).
The only way G (M,w) can be ambiguous is that
S|2>31:>*W,
m Im
S-S W.
m Im
sentence w exists Iff M accepts w.

ambiguity problem
P.mp: "Glven a context-free grammar G
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Theorem 10.74 If C=(yg,y1 - 7).t =1,isa

computation of Turing machine M on input string w,
then

| repr(C)| < 2t - (| w|+t+4) +1.
Proof.repr(C)=yg # VX #y; #v53 # ... vpq #7} ##
Here [yo| = [$asw$| = |w| + 3.
lVil<lvol +t, 1= 1,....L.
| repr(C)[= Iyol + 2lys #] ..+ 2y #l + | v] #] + 1
<2t (yol + 1+ 1) +1=2t" (] w+t+4) +1

Theorem 10.75 Let M be a Turing machine such that
the following statements hold.
(1) The initial state g5 of M Is not a final state.

(2) M can make no move out of a final state.
(3) m accepts only at the extreme right end of its
tape.
Further let w be an input string and assume that there
IS a natural number t > | w| such that
(4) M makes no more than t moves on w,
that is, M has no computation on w with
length greater than t.

Then for all k > 13-t°the following statements are
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logically equivalent.
(a) M accepts w In time t.
(b) G(M,w) Is ambiguous.
(c) G(M,w) is not C(k), where C(k)
denotes any of the grammar classes
LR(K), LALR(K), SLR(K), LL(k), LALL(K),
or SLL(k).
Proof. Similar to the proof of T 10.72,
a) implies b), which implies c).
Assume a) IS not true.
Then M has on w no accepting computation. All
computations on w has length at most t.

Let C = (vo, 71, -+» Ym+1), 0<SM<t, be a computation
on.

Then |repr(C)| <2t (t+t+4) + 1 = 4t°+8t+1 <13t
for all k>13t?,

K:L(S1)nk:L(Sy) < {repr(C)| Cis ...} =&.
K:L(S1)k:L(S,) =. Hence S has SLL(K) property.

G (M,w) has SLL(K) property. It is also LALL(k),
LL(k), LALR(k), LR(k), and unambiguous.

A function T from the set of natural numbers to the set
of positive natural numbers is time-constructible if
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Theorem 10.77 (Hunt, Szymanski and Ullman, 1975)

Let C(k), for all k >0, denote the class of SLL(k),
LL(k), SLR(k), or LR(k) grammars. Then the problem
of uniform non-C(K) testing is NP-complete when k is
expressed in unary, and NE-complete when k is ex-
pressed in binary. When C(k) denotes the class of LA-
LR(K) or LALL(k) grammars, the problem of uniform
non-C(k) testing i1s NP-hard when k is expressed In
unary, and NE-hard when k Is expressed in binary.
Proof.We have shown that for C(k) the uniform non-
C(k) = SLL(k), LL(k), SLR(k), LR(k), testing problem
IS In NP when k is expressed in unary.

To show that the problem is NP-hard we have to es-
tablish polynomial-time reductions to this problem
from arbitrary decision problems in NP.

Let P be any decision problem in NP.

3 polynomial p and p(n) time-bounded TM M s.t.
M accepts w Iff w Is a yes-instance of P.

By P 10.76 we may assume M never makes more than

p(|w|) moves on w.

Now any instance w of P can be transformed into

(G (Mw), un(13p(Iw])?)),
where un(k) denotes the unary representation of k.
By T 10.75,
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"Glven a context-free grammar G, is there a natural
number k such that G is C(k)?"

Theorem 10.78 (Knuth, 1965; Rosenkrantz and
Stearns, 1970) Let C(k) denote one of the grammar
classes LR(k), LALR(k), SLR(k), LL(k), LALL(k), or
SLL(K).

It is unsolvable whether or not a given context-free
grammar G is C(k) for some k > 0.
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10.4 Complexity of LALR(K) and LALL(k) testing

For any fixed k=1, Py a| rex) IS PSPACE-complete.
For any fixed k=2, Py 5 | () IS PSPACE-complete.

NPcPSPACE.

Theorem 10.79 For any fixed k > 0, the problems of

non-LALR(k) testing and LALR(K) testing are in
PSPACE.

Proof.
1) Q1 :=Qp:={[S"—>+$S%, ¢]};
while true do begin
If CORE(Q1) = CORE(Q>) then

If Q1 L Q, contains a pair of distinct
items exhibiting an LR(k)-conflict then
output "G is non-LALR(k)" and halt
guess strings X and Y € VU {$, }
Q1 := GOTO(Q4, X)
Q, :=GOTO(Q,, Y)
end

2) By Savitch’s Theorem
PSPACE = NSPACE.
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Regular expression nonuniversality
Pnonuniv- - Glven a regular expression E over V,

is L(E)=V"?"

Noncomputations of M on input w means any string
that does not represent a valid computation of M on
W.
We shall show that given any polynomial p, a p(n)
space-bounded M, and w, the pair (M, w) can be
transformed in polynomial time into a regular ex-
pression E(M, p, w) that denotes the set of those
strings that are not representations of accepting com-
putations of M on w.
V™ \ L(E(M, p,w)) denotes accepting computation.
Then

M accepts w iff L(E(M, p,w)) #V".

Let M =(Q, %, I, P, qs, F, B, $). represent
computation (yg vy, - Yn) @S String yq...vy.

any configuration y; is a string in $I"" QI""$.
E,(M)=¢uU ($I"QI""$)"(ruQ)V”

U ($IQI$) " $(ruQ)”

U ($TQI™$) "SI sv™
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initial conf. $q.w$
E5(M) =$TQI$V* U $(Q{a) T $V*
u$q T (C\Z)C$V™

For M and w =a;...a,, in X", initial conf. $g.a;...a,%

Es(Mw)=$q$V" U $g. V7L ..U $9 2 1SV
G IO AV
U $05(Z\{ag HZ SV
U $0.2(Z\{a, Z VU ..
U 8022\ ap ISV

accepting conf. $a.qp$, where geF.
E4(M)=V"$I(Q\F)I''$

E;(M) U E5(M) UE3(M,w)UE4(M)
denotes the set of those strings in V" that are not form
Yo---Yn» Yo IS the initial conf. y; is a conf.,y, Is accept-

Ing conf.
conf. shorter than s(|w|)
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tape length, postion of state

Eg(M,s,w)=U { V'$I™QI"$$CKQI'$V* | m,n,k,1>0,
0<m-+n<s(|wl)-3, 0<k+I<s(|wl)-3,
but none of conditions are satisfed:
(a) k =m and I=n>0,
(b)k=m+landl=n-1,
(c)k=m-landl=n+1>1,
(dk=mandl=n=0,
(e)k=mandl=n+1=1,
f)k=m-landl=n+1=1}

Restrict our attention to strings denoted by

(a) V'$IMQI"$$Ir™QIr"$v”, where m>0,n>0
(b) V*$rMQIr"$$r™Qr-isv, where m >0, n > 0
(€) V'$SI™QI"$$r™1Qr"*1$v*, where m >0, n > 0
(d) V'$Ir™QIr"$$r"Qsv-, where m >0

(e) V'$IrMOI"$$rmQIr$v”, where m >0

(f) V'$rMQI"$$r™-1Qrsv*, where m> 0

In (a), (b), (¢), m + n<s(|w]) -3,

In (d), (e), (c), m+n<s(|wl) - 3,

tape symbol changed
E7(M,S,W)
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=u{V$IMal QI $$r™M(I\{a)” QI $V” |
ael, 0<m<s(|w|)-4},

E7(M ,S,W)
=U{V'$[ al "aQI"$$" QI (N\{aH)Ir"sVv™*|

ael, 0<m<s(|w|)-4},

Apply action

Convention: g4,0,€Q, a, a;,a,, dq,d, €I, m >0,
P denote set of actions of M

E,(M,s,w) =U { V'$I™Mqqa,1 $$T Mg 8,0 $V™ |
m<s(|w|)-4, q;a;—>0a, P}

Ep(M,s,w) =U { V'$I™Mq a1 $$Ma, g, $V™ |
m<s(|wl|)-4, g;a;—arq, 2P},

Eo(M,s,w) =u{V*$I"™d, g2, $$T ™ 00aol SV

m<s(|w])-3, d1q181 0028, P}
Eq(M,s,w) =U { V'$IMq$$IMq,$V™ |

m<s(|wl|)-3, q1$—0,$ P},
E.(M,s,w) =U { V' $I'"q,$$IMg,a$V" |
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Theorem 10.80 Let p be a polynomial, M a Turing
machine that runs in space p(n), and w an input
string. Then

LEM,p.wW)) =V o 11 --¥n | N 20,
(vo, -, 7Yn ) IS an accepting computation

of M on w having space complexity at

most p( | wi) },
where V Is the alphabet of M. Moreover, the regular
expression E(M,p,w) can be constructed from M and
w In time polynomial in | M| + | w|.

Theorem 10.81 (Stockmeyer and Meyer, 1973)
Pnonuniv: Fegular expression nonuniversality, Is

PSPACE-hard.
Proof. To show that P,oniyv 1S PSPACE-hard

1) Choose any problem P in PSPACE,
2) establish a polynomial-time reduction of
P 1o I:)nonuniv-

Since P is In PSPACE it has a polynomial space-
bounded solution. There exists a polynomial p and
p(n) space-bounded Turing machine M s.t.

M accepts input w iff w Is a yes-instance of P.

By T 10.80 there exists a polynomial time-bounded
algorithm that transforms any input string w of M
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Establishing a polynomial-time reduction of r.e. non-
universality to non-LALR(K) testing.

r.e. nonuniversality reduces in polynomial time to
"Given a right-linear grammar G with terminal
T and with set of rules contains only rules of

the forms A—aB and A—e¢, is L(G)=T 2"
We shall show that this problem reduces in polynomi-
al time to non-LALR(k) testing.

Let k>1 and G=(NUT, T, P, S) be a right-linear gram-
mar. Further assume that the rules in P are of the

forms A—aB and A—¢. Define G (G,k) as grammar
with nonterminals {@ , E1, By, Hy, Hy, H3} U N,

terminals TuU {c, d, f, g, h, S ,S)}UP
start symbol S
rules:S —>E1|S (é S)| gE»
E,—aE,, forall a €T,
E;—HdX | Hyck,
E,—Hck | H,od,
A—aB(A,aB), forall A»aBinP
A—HsfX(Ag), forall AoginP
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Lemma 10.82 Let y be a string such that the state
VALIDg(y) in the LR(0) machine of the $-augmented

grammar for G (G,k) contains a pair of distinct items
[C — aep] and [D — we],where oo # €. Theny:1 =h.
Proof. Note that one of oo and o must be a suffix of
the other, and that o and m must suffixes of y.
v:1=0a:l=w:1.

Denote y:1 by X.

X28" | S, Hy, Ho, Ha, f, g, symbol in NUT

(No rule D—®’Y, where Y Is one of these)

X2E,, (5 ,5),(Ag),(A,aB), where A, B e N, a T

(No two distinct item [C — aYe3] and [D — ®Ye] In
the same state)

X=#c, d

([E;—>Hjc™+c“™ and [E;—~H,c*] in the same state
Implies they are equal.

X#E4

([E;—aEqe] and [E;—DbE¢], ab, cannot simulta-

neously be in VALID(y); |_J§ —E 4] belongs only to

VALIDo($E,) and [E;—aEje] ¢ VALIDo($E,))
Thus X = h.
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Lemma 10.83 For all 0 < n <k and strings vy the fol-
lowing hold for the $-augmented grammar of

G (GK).
(a) VALID,(y) contains an item of the form
[C — aeEqp, y]iffy € $T
(b) VALID,(y) contains an item of the form
[C — aeAB, V], A € N, iffyis of the form $w
wherew e T~ and S =*WA in G.
(c) VALID,(y) contains an item of the form
[C — aeE,B, V] iff C=S ,a=g,B=¢
y =39, and y = $g.

Lemma 10.84 Let 0 <n <k and let y be a string s.t.

In the $-augmented grammar of G (GK),
VALID,(yh) = &. Theny € $T U $g. Moreover,

VALID,(yh) equals

(1) {[Hy — he, d"], [Ho— he, "], [H3 — he, f"]}
Ify € $L(G),

(2) {[H1 = he, d"], [Hy — he, c"]}
if y € $T\$L(G),
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Proof. VALID,(yh) can only contain the items

‘Hy — he, d"], [H; = he, c"],[Ho— he, "],
‘Hy—> he, d"], and [H3 — he, f"].

[Hy — he, d"], [Hy, — he, c"]eVALID,,(yh)

iff [C—>0eE (B, y]eVALID,(y) iffy € $T .

[H3 — he, f"]eVALID,(yh)

Iff [C—aeAB, y]eVALID,(y), where A>¢ In G

Iff v is of the form $w wherew € T, S =*WA in G
[H; — he, c"], [H, — he, d"]eVALID,(yh)

iff [C — aeE5PB, y] €VALID,(y)

iffC=73 ,o=(,Bp=¢,y=% andy =39

Theorem 10.85 Let G be any right-linear grammar
with terminal alphabet T and with a set of rules con-

taining only rules of the forms A— aB, A— .

Then for all natural numbers k >1, € (GK) isLR(1).
& (GK) is LALR(1) if L(G) = T", and

non-LALR(K) if L(G) = T .

Proof. Let y’y and y’» be strings, [C’—a’«7,y’] IN
VALID4(y’1) and [C—ows, z] in VALID4(y’5) be two
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distinct items. Then VALID4(y’1) must contain an

item [A—ae3,y] from which distinct C—we and ae.
Now If VALlDo(y’l) :VALIDO(V,Z) then ’Y’]_:’Ylh,

v’ >=v,h. But then shows that G (Gk) is LR(L).

it is LALR(1) if L(G) =T . L 10.84 show that
if L(G)=T", then it cannot be LALR(K).

Theorem 10.86 For each fixed natural number k> 1,
the problems of non-LALR(K) testing and LALR(K)
testing are PSPACE-complete.

Theorem 10.87 For each fixed natural number k >
2, the problems of non-LALR(k) testing and LALL(K)
testing are PSPACE-complete.

Theorem 10.88 Grammar G can be tested for the
non-LALR(k) and non-LALL(k) properties simulta-
neously in nondeterministic space O(| w| + k) and In

nondeterministic time O((k+1)-|G| 2. 216 )

Theorem 10.89 The problem of uniform
non-LALR(k), LALR(k), non-LALL(k), and LALL(k)
testing are PSPACE-complete when Kk is expressed in
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unary. The problems of non-LALR(k) and

non-LALL(K) testing are NE-complete when K Is ex-
pressed in binary.
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Table 1: Complexity of non-C(k) testing

fived fived fre_e K frge k '3 k G
=1 K> 0 In N IS

- unary | binary | C(k)

non- In P In P NP- NE- |unsol

SLL(K) com- com- |vable
plete plete

non- In P PSPACE |PSPACE |NE- |unsol

LALL com- com- com- |vable
(k) plete plete plete

non- In P In P NP- NE- |unsol

LL(K) com- com- |vable
plete plete

non- In P In P NP- NE- |unsol

SLR(k) com- com- |vable
plete plete

non- PSPACE | PSPACE | PSPACE NE- |unsol

LALR | com- com- com- com- |vable
(k) plete plete plete plete

non- In P In P NP- NE- |unsol

LR(K) com- com- |vable
plete plete
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Table 1: Upper bounds on the complexity of non-C(k)
testing when k > 2 is fixed.

deter

nistic - Mministic
st ic i parser
space
NnonN-
SLLgg O oM o  Oo@rmn)
non- parser

|_A|_|_(k) tci?:;truction O(nZ) O(2n+2Iogn) O(2n+(k+1)logn)

non-

Ltk O [0 O O (2 +(e+Diog n
non- O(nk+2)a O(nZ) O(nz) O(2n+(k+1)|ogn)
SLR(K)

Non- parser

LALR(k) tci?:;truction O(nZ) O(2n+2Iogn) O(2n+(k+1)logn)

non-

LR(k) O(nk+2) O(nZ) O(nZ) O(2n|<+1+(k+1)log n)

a. For (non-)SLR(2) testing an O(n®) algorithm is known.
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Table 1: Upper bounds on the Complexity of C(1)
testing and on Parser Construction

C(1) testing C(1) C(1) parser
deterministic parser construction
time size time

SLL(1)  O(m) o(n?) o)
LALL(1) |O(n?) O(2n+2logn) | O(2n+3logn)
LL(1) O(n?) O(2r%+2logn) | Q(2n?+4logn)
SLR(]_) O(nZ) O(2n+2logn) O(2n+3logn)
LALR(1) | O(2n+3loam) O(2n+2logn) | O(2n+3logn)
LR(1) O(n?) O(2r2+2ogn) | O(2n?+4logn)
Kwang-Moo Choe PL Labs., Dept of CSKAIST




	10.3 Hardness of Uniform LR(k) and LL(k) Testing
	derive lower bounds on the complexity of
	uniform non-C(k) testing
	P: solvable in deterministic polynomial time
	NP: solvable in nondeterministic polynomial time
	NE: solvable in nondeterministic one level exponential time (2p(n))
	PSPACE: solvable in polynomial space
	A decision problem P is hard for NP (or NP-hard)
	if every decision problem in NP reduces in polynomial time to P.
	P is complete for NP (or NP-complete) if P is in NP and NP-hard
	NE-hard, NE-complete
	PSPACE-hard, PSPACE-complete
	open problem: whether or not P = NP.
	P = NP iff some NP-complete problem is in P.
	Step 2. Construct automaton Mk(G’) with collection of final state sets Freduce(u), uŒk:S*$, and F...
	One automaton for each specific string uŒk:T*$.
	One automaton for each specific string uŒk:S*$.
	Theorem 10.21 Grammar G can be tested for the LR(k) property simultaneously in deterministic spac...
	in time O((k+1)3 ·|S|k·|G|2).
	then "BÆwŒP
	[BÆ·w,y]ŒVALIDu,n+m+1(g) .
	Conversely, if [AÆa·wb, z]ŒVALIDu,n(d) then there is a viable suffix g s.t. d=gwR and [AÆaw·b,y] ...
	Conversely, if [AÆa·wb, W’] Œ VALIDu-set,n(d) then there is a viable suffix g s.t. d=gwR and [AÆa...
	space O(2k·|G|) and in deterministic time
	O((k+1)·2k·|T|k·|G|).
	Corollary 10.58 For any fixed k, the LL(k) testing problem PLL(k)is solvable simultaneously in de...
	Showing NP-hardness of uniform non-C(k) testing
	1) select some specific decision problem which is known to be NP-hard, and reduce this problem
	to uniform non-C(k) testing.
	2) For any decision problem P in NP, show that
	there exists a polynomial time-bounded reduction of P to uniform non-C(k) testing.
	Let M = (V, P) be rewriting system and Q, S and G be subsets of the alphabet V, qs Œ Q, FÕQ, BŒG\...
	$ŒV\(Q»G) s.t. V=Q»G»{$}, Q«G=Æ, and SÕG. We say that M is a Turing machine with state alphabet Q...
	M = (Q, S, G, P, qs, F, B, $),
	if each rule in P has one of the following forms:
	(a) q1a1Æq2a2 "print a2"
	(b) q1a1Æa2q2 "print a2 and move to the right"
	(c) dq1a1Æq2da2 "print a2 and move to the left"
	(d) q1$ Æq2$ "record end of tape"
	(e) q1$ Æq2B$ "record end of tape and extend
	work space"
	(f) dq1$ Æq2d$ "record end of tape and move to the left"
	A configuration of Turing machine M is a string of the form
	$aqb$,
	where a and b are tape symbol strings in G*, and q is a state in Q.
	The string ab is called the tape contents, and 1:b$ is the tape symbol scanned at $aqb$.
	Configuration $qsw$ is initial for an input string wŒS*
	Configuration $aqb$ is accepting if q is some final state in F.
	A nonaccepting configuration to which no rule in P is applicable is called error configuration.
	A computation of Turing machine M on input string w is any derivation in M from the initial confi...
	L(M)={wŒS*|$qsw$ﬁM *$aqb$ , a, bŒG*,qŒF}
	Turing machine M is nondeterministic if to some configuration two actions are applicable.
	Proposition 10.61 Let M be any language recognizer (random-access machine) with input alphabet S....
	(1) L(M) = L(M’)
	(2) If M runs in time O(T(n)),
	then M’ runs in time O(T(n)k)
	(3) If M runs simultaneously in time O(T(n)) and in space O(S(n)), then M’ runs
	simultaneously in time O(T(n)k) and in space O(S(n)k)
	(4) If M is deterministic, then so is M’
	(5) If M halts on input w, then so does M’
	We shall show that the set of accepting computations of any Turing machine on a fixed input strin...
	Let M = (Q, S, G, P, qs, F, B, $).
	Let C = (g0, g1, ..., gn+1) be a computation of M on w.
	Assume C is nontrivial, meaning that n+1³1. Then
	repr(C)=g0 # gR1 # g1 # g2R # g2 #... gn # gR n+1# #
	C and repr(C) are in one-to-one correspondence with each other.
	We shall show that
	{repr(C)|C is a nontrivial accepting computation of M on w} =L(G1(M)) « L(G2(M,w)).
	G1(M) is defined with
	nonterminals : {S1, A1, B1}
	terminals: Q » G » {$, #}
	start symbol: S1
	rules
	1) S1 Æ $A1$#S1 ,
	2) S1 Æ # ,
	3) A1 Æ aA1a , " aŒG
	4) A1 Æ w1B1w2R, " w1Æw2 in P, no $ in w1w2 5) A1 Æ w1$#(w2$)R ," w1$Æw2$ in P
	6) B1 Æ aB1a , " aŒG
	7) B1 Æ $#$ .
	L(B1) = {b$#$bR | bŒG*}
	L(A1)={aw1gw2RaR|aŒG*,w1Æw2ŒP,
	no $ in w1w2,gŒL(B1)}
	» {aw1$#(w2$)RaR | aŒG*,w1$Æw2$ŒP}
	= {aw1b$#$bRw2RaR|a,bŒG*,w1Æw2ŒP,
	no $ in w1w2}
	» {aw1$#$w2RaR | aŒG*,w1$Æw2$ŒP}
	= {aw1b$#(aw2b$)R|a,bŒG*,w1Æw2ŒP,
	no $ in w1w2}
	» {aw1$#(aw2$)R | aŒG*,w1$Æw2$ŒP}
	= {g$#(d$)R | g, dŒG*QG*,g$ﬁd$ in M}
	L(S1)=($L(A1)$#)*#
	={$g$#(d$)R$# | g, dŒG*QG*,g$ﬁd$ in M}* # ={$g$#$dR$# | g, dŒG*QG*,g$ﬁd$ in M}* #
	={f#yR# | f,yŒ$G*QG*$, fﬁy in M}* #
	={#} » {f0#yR1 #f1#y2R #...fn#yR n+1# # | n ³ 0 ,
	fi, yi+1Œ$G*QG*$,fiﬁyi+1 in M }
	Lemma 10.62 For any Turing machine M,
	L(G1(M)) = {#} » {f0 # yR1 # f1 # y2R #
	... fn # yR n+1# # | n ³ 0 ,
	fi and yi+1 are configurations of M
	and fi ﬁ yi+1 in M for all i = 0, ..., n }.
	Moreover, the grammar G1(M) is of size O( |M|) and can be constructed from M in time O( |M|).
	G2(M,w) is defined with
	nonterminals : {S2, A2, B2, C, D, E}
	terminals: Q » G » {$, #}
	start symbol: S2
	rules
	1) S2 Æ $qsw#A2# ,
	2) A2 Æ $B2$#A2 ,
	3) A2 Æ $D ,
	4) B2 Æ aB2a , " aŒG
	5) B2 Æ qCq , " qŒQ
	6) C Æ aCa , " aŒG
	7) C Æ $#$ ,
	8) DÆ aD , " aŒG
	9) D Æ qE , " qŒF
	10) EÆ aE, " aŒG
	11) E Æ $# .
	L(E) =G*$#
	L(D) = G*FL(E) = G*FG*$#
	L(C) = {b$#$bR| bŒG*}
	L(B2)={aqgqaR / aŒG*, qŒQ, gŒL(C) }
	={aqb$#$bRqaR / a,bŒG*, qŒQ}
	={aqb$#$(aqb)R / a,bŒG*, qŒQ}
	={dR$#$d / dŒG*QG*}
	L(A2) = ($L(B2)$#)*$L(D)
	= {$dR$#$d$# / dŒG*QG*}*$G*FG*$#
	= {gR#g# / gŒ$G*QG*$}*$G*FG*$#
	= {gR1 # g1 # g2R # g2 #...gR n# gR n+1# # | n ³ 0 ,
	gi is a configuration of M for all i =1,..., n, gn+1 Œ$G*FG*$}
	L(S2)=$qsw$#L(A2)#
	={$qsw$#gR1 # g1 # g2R # g2 #...gR n# gR n+1# # / n ³ 0, gi Œ$G*QG*$, gn+1 Œ$G*FG*$}
	Lemma 10.63 For any Turing machine M and input string w,
	L(G2(M,w)) = {g0 # gR1 # g1 # g2R # g2 #
	... gn # gR n+1# # | n ³ 0 ,
	g0 is a initial configurations of M for w,
	gi is a configuration of M for all i =1,..., n,
	gn+1 is an accepting configuration of M }
	Moreover, G2(M,w) is of size O( |M| +| w|) and can be constructed from M in time O( |M| + |w|)
	Theorem 10.64 Let M be a Turing machine and w an input string. Then
	L(G1(M)) « L(G2(M,w)) = {repr(C) | C is a nontrivial accepting computation of M on w }.
	Furthermore, for any natural number k > | w|+3
	k:L(G1(M)) « k:L(G2(M,w)) Õ {k:repr(C) |
	C is a nontrivial computation of M on w }.
	Moreover, if repr(C) belongs to k:L(G2(M,w)), then the computation C is an accepting computation.
	Proof. a) Assume FŒL(G1(M)) « L(G2(M,w)).
	Any string in L(G1(M)) is either # or of the form
	f0 # yR1 # f1 # y2R #... fn # yR n+1# #,
	where n³0, fi and yi+1 are conf. and fi ﬁyi+1.
	Any string in L(G2(M,w)) is of the form
	g0 # gR1 # g1 # g2R # g2 #... gm # gR m+1# # ,
	where m³0, g0: initial conf.,gm+1: accepting conf.
	gi: configuration.
	Clearly F ¹ #.
	Two string can be equal if
	n =m, fi = gi for i = 0,...,n+1.
	Then C = (g0 , ..., gn+1) is a nontrivial computation,
	and repr(C) = F.
	Assume C be a nontrivial accepting computation of M on w.
	repr(C)=g0 # gR1 # g1 # g2R # g2 #... gn # gR n+1# # ,
	where g0: initial conf.,gm+1: accepting conf.
	giﬁgi+1, 0£i£n.
	repr(C) ŒL(G1(M)), repr(C) ŒL(G2(M,w)).
	b) Let F in k:L(G1(M)«k:L(G2(M,w)).
	Any string in k:L(G1(M) is either k:# or of the form k:f0 # yR1 # f1 # y2R #... fn # yR n+1# #,
	where n³0, fi and yi+1 are conf. and fi ﬁyi+1.
	Any string in k:L(G2(M,w)) is of the form k:g0 # gR1 # g1 # g2R # g2 #... gm # gR m+1# # ,
	where m³0, g0: $qsw$, gi: conf. 0£i£m+1.
	Since k > 3, F ¹ k:#.
	Since k > |w| + 3 = |g0|, f0 =g0.
	Hence F must be of the form k:repr(C)
	c) Since repr(C) is end with ##,
	if repr(C)Œk:L(G2(M,w)), repr(C)ŒL(G2(M,w)),
	which means that C is an accepting computation.
	Theorem 10.65 (Harmanis, 1967) Given any Turing machine M and input string w, the pair(M,w) can b...
	(1) M accepts w.
	(2) L(G1) « L(G2) ¹ Æ
	Proof. We may assume that qsœF.
	Note that if qsŒF then L(M)=S*
	set of actions {qsaÆqfa | a ŒS»{$}}
	When qsœF, it follows that every accepting computation must be nontrivial.
	Choose G1=G1(M), G2=G2(M,w).
	Then M accepts w iff {repr(C) | ...} ¹Æ
	iff L(G1) « L(G2) ¹ Æ
	acceptance problem
	Paccept: "Does Turing machine M accepts input w?"
	nonemptiness of intersection problem
	Pnon-«:"Given two CFG G1 and G2, is L(G1) « L(G2) ¹ Æ?"
	acceptance problem is unsolvable.
	nonemptiness of intersection problem is unsolvable.
	A grammar is s-grammar when all the rules begins with a terminal, and there is no pair of rules A...
	A nonterminal A of a context-free grammar has the s- property if (1) all the rules of A begin wit...
	where b1 ¹ b2.
	We shall show that G1(M) and G2(M,w) can be replaced by two s-grammars, when M satisfies some add...
	Consider G1(M).
	For A1 the s-property is violated,
	G1(M) has A1ÆdA1d and A1Ædq1a1B1a2dq2 ,
	where dq1a1Æq2da2 is an action of M.
	G1^(M) : resulting of left factoring of G1(M).
	1) rules of S1 and B1 are as in G1(M).
	2) A1ÆX[A1,X] for all X ŒG»Q.
	3) [A1,a1]Æa2[A1,a2]a1 for all a1, a2ŒG.
	4) each rule of the form A1ÆX1...XmB1Y1...Yn is replaced by
	[A1,X1]ÆX2[A1,X1X2]
	...
	[A1,X1...Xm-1]ÆXmB1[A1,X1...XmB1]
	[A1,X1...XmB1]ÆY1[A1,X1...XmB1Y1]
	...
	[A1,X1...XmB1Y1...Yn-1]ÆYn.
	Then L(G1(M)) =L(G1^(M)) . And
	G1^(M) is s-grammar.
	1) S1 and B1 have s-property.
	2) [A1,g], where |g| ³ 1, has s-property.
	3) rules of [A1,q], where qŒQ, are the forms
	[A1,q]Æa[A1,qa]
	4) rules of [A1,a], where aŒG, are of the forms
	[A1,a]Æb[A1,b]a, where bŒG or
	[A1,a]Æq[A1,aq], where qŒQ.
	Lemma 10.66 For any Turing machine M,
	L(G1^(M)) = {#} » {f0 # yR1 # f1 # y2R #
	... fn # yR n+1# # | n ³ 0 ,
	fi and yi+1 are configurations of M
	and fi ﬁ yi+1 in M for all i = 0, ..., n }.
	Moreover, G1^(M) is an s-grammar of size O( |M|2) and can be constructed from M in time O( |M|2) .
	Lemma 10.69 Any Turing machine M = (Q,S, G, P, qs, F', B, $) can be transformed in time O(| M|) i...
	(1) qs does not belong to F'.
	(2) M' can maker no move out of states
	in F'.
	(3) M' accepts only at the extreme right
	end of its tape.
	(4) L(M’) = L(M).
	(5) If M is T(n) time-bounded, M' is
	O(max{n,T(n)}) time-bounded.
	(6) If M is S(n) space-bounded, M' is S(n)
	pace-bounded.
	(7) If M is simultaneously T(n) time-
	bounded and S(n) space-bounded, M' is
	simultaneously O(max{n,T(n)}) time-
	bounded and S(n) space-bounded.
	Proof. Q’ = Q » {q’ | qŒF, q’œQ»G} » {qf }
	P’ = P » {qaÆq’a | qŒF, aŒG»{$}}
	» {q’aÆaq’ | qŒF, aŒG}
	» {q’$Æqf $}
	F’ = {qf }.
	Consider G2(M,w).
	G2(M,w) is not LL(k) for any k.
	Observe that for any k ³1,
	A2 Æ $B2$#A2 and A2 Æ $D are rules
	FIRSTk($B2$#A2)
	= k:{gR#g# / gŒ$G*QG*$}+$G*FG*$#
	FIRSTk($D)= k:$G*FG*$#
	intersection of the two FIRSTk contains all strings
	in $Gk-1 and in $GmFGn, m, n ³0, m+n = k - 2.
	Remove the above conflict if restriction on M. A2 Æ $D generates reversal of all accepting conf.
	Assume M accepts only at the extreme right end
	($gq$, where qŒF).
	Then restrict L($D) = $FG*$#. Remove from G2(M,w) all D Æ aD, where aŒG.
	Now every string in FIRSTk($D) begins with $q.
	Another conflict, intermediate conf. g in gR#g# derived by $B2$# may contain states belonging to F.
	M make no move out of a final state. Restrict
	L($B2$#A2 )={gR#g# / gŒ$G*(Q\F)G*$}+$FG*$#
	Remove from G2(M,w) all rules B2ÆqCq.
	Partion Q into F and Q\F.
	G2^(M,w) is the grammar with
	nonterminals : {S2, A’2, A2, B2, C, E}
	terminals: Q » G » {$, #}
	start symbol: S2
	rules
	1) S2 Æ $qsw#A2# ,
	2) A2 Æ $A’2
	3) A’2 Æ aB2a$#A2 , " aŒG
	4) A’2 Æ qCq$#A2 , " qŒQ\F
	5) A’2 Æ qE, " qŒF
	6) B2 Æ aB2a , " aŒG
	7) B2 Æ qCq , " qŒQ
	8) C Æ aCa , " aŒG
	9) C Æ $#$ ,
	10) EÆ aE , " aŒG
	11) E Æ $# .
	Lemma 10.67 For any Turing machine M and input string w,
	L(G2^(M,w)) = {g0 # gR1 # g1 # g2R # g2 #
	... gn # gR n+1# # | n ³ 0 ,
	g0 is a initial configurations of M for w,
	gi is a configuration in $G*(Q\F)G*$ for
	all i =1,..., n,
	gn+1 is a configuration in $G*(Q\F)G*$ }
	Moreover, the grammar G2^(M,w) is an
	s-grammar of size O( |M| + |w|) and can be constructed from M and w in time O( |M| + |w|).
	Theorem 10.68 Let M be a Turing machine such that the following statements hold.
	(1) The initial state qs of M is not a final state.
	(2) M can make no move out of a final state.
	(3) M accepts only at the extreme right end of
	its tape.
	Then for any input string w
	L(G1^(M)) « L(G2^(M,w)) = {repr(C) | C is an accepting computation of M on w }.
	Furthermore, for any natural number k > | w|+3
	k:L(G1^(M)) « L(G2^(M,w)) Õ {repr(C) | C is a nontrivial computation of M on w }.
	Moreover, if repr(C) belongs to k:L(G2^(M,w)), then the computation C is an accepting computation
	Theorem 10.70 Given any Turing machine M and input string w, the pair(M,w) can be transformed in ...
	(1) M accepts w.
	(2) L(G1) « L(G2) ¹ Æ
	Theorem 10.71 The nonemptiness of intersection problem for s-languages is unsolvable.
	G^(M,w) : uniting the s-grammars G1^(M) and
	G2^(M,w), and SÆS1 | S2.
	Theorem 10.72 Given any Turing machine M and input string w, the pair (M,w) can be transformed in...
	(1) M accepts w.
	(2) G is ambiguous.
	Proof. Let G=G^(M,w). G1^(M) and G2^(M,w) can be constructed from M and w in polynomial time.
	Then so can G^(M,w).
	The only way G^(M,w) can be ambiguous is that
	Sﬁlm S1ﬁlm *w, Sﬁlm S2ﬁlm *w.
	sentence w exists iff M accepts w.
	ambiguity problem
	Pamb: "Given a context-free grammar G
	is G ambiguous?"
	Theorem 10.73 The ambiguity problem for context- free grammars is unsolvable.
	Theorem 10.74 If C = (g0 , g1 ... gt ) , t ³ 1, is a computation of Turing machine M on input str...
	| repr(C)| £ 2t . (| w|+t+4) +1.
	Proof.repr(C)=g0 # gR1 # g1 # g2R # .... gt-1 # gR t# #
	Here |g0| = |$qsw$| = |w| + 3.
	|gi|£|g0| + t, i = 1,...,t.
	| repr(C)|= |g0| + 2|g1 #| +...+ 2|gt-1 #| + | gR t#| + 1
	£ 2t (|g0| + 1+ t) + 1 = 2t . (| w|+t+4) +1
	Theorem 10.75 Let M be a Turing machine such that the following statements hold.
	(1) The initial state qs of M is not a final state.
	(2) M can make no move out of a final state.
	(3) m accepts only at the extreme right end of its tape.
	Further let w be an input string and assume that there is a natural number t > | w| such that
	(4) M makes no more than t moves on w,
	that is, M has no computation on w with
	length greater than t.
	Then for all k ³ 13×t2�the following statements are logically equivalent.
	(a) M accepts w in time t.
	(b) G(M,w) is ambiguous.
	(c) G(M,w) is not C(k), where C(k)
	denotes any of the grammar classes
	LR(k), LALR(k), SLR(k), LL(k), LALL(k),
	or SLL(k).
	Proof. Similar to the proof of T 10.72,
	a) implies b), which implies c).
	Assume a) is not true.
	Then M has on w no accepting computation. All
	computations on w has length at most t.
	Let C = (g0, g1, ..., gm+1), 0£m<t, be a computation on.
	Then |repr(C)| £2t (t+t+4) + 1 = 4t2+8t+1 £13t2.
	for all k³13t2,
	k:L(S1)«k:L(S2) Õ {repr(C)| C is ...} =Æ.
	k:L(S1)«k:L(S2) =Æ. Hence S has SLL(k) property. G^(M,w) has SLL(k) property. It is also LALL(k),...
	A function T from the set of natural numbers to the set of positive natural numbers is time-const...
	Proposition 10.76 Let T be any time-constructible function. Then for any T(n) time-bounded Turing...
	Theorem 10.77 (Hunt, Szymanski and Ullman, 1975) Let C(k), for all k ³0, denote the class of SLL(...
	Proof.We have shown that for C(k) the uniform non- C(k) = SLL(k), LL(k), SLR(k), LR(k), testing p...
	To show that the problem is NP-hard we have to establish polynomial-time reductions to this probl...
	Let P be any decision problem in NP.
	$ polynomial p and p(n) time-bounded TM M s.t.
	M accepts w iff w is a yes-instance of P.
	By P 10.76 we may assume M never makes more than p(|w|) moves on w.
	Now any instance w of P can be transformed into
	(G^(M,w), un(13.p(|w|)2)),
	where un(k) denotes the unary representation of k.
	By T 10.75,
	M accepts w iff G^(M,w) is non-C(13.p(|w|)2)
	Hence the transformation is a reduction of P to the problem of non-C(k) testing for k in unary.
	"Given a context-free grammar G, is there a natural number k such that G is C(k)?"
	Theorem 10.78 (Knuth, 1965; Rosenkrantz and Stearns, 1970) Let C(k) denote one of the grammar cla...
	It is unsolvable whether or not a given context-free grammar G is C(k) for some k ³ 0.
	10.4 Complexity of LALR(k) and LALL(k) testing
	For any fixed k³1, PLALR(k) is PSPACE-complete.
	For any fixed k³2, PLALL(k) is PSPACE-complete.
	NPÕPSPACE.
	Theorem 10.79 For any fixed k ³ 0, the problems of non-LALR(k) testing and LALR(k) testing are in...
	Proof.
	1) Q1 := Q2 := {[S’Æ·$S$, e]};
	while true do begin
	if CORE(Q1) = CORE(Q2) then
	if Q1 » Q2 contains a pair of distinct items exhibiting an LR(k)-conflict then
	output "G is non-LALR(k)" and halt
	guess strings X and Y Œ V » {$, e}
	Q1 := GOTO(Q1, X)
	Q2 := GOTO(Q2, Y)
	end
	2) By Savitch’s Theorem
	PSPACE = NSPACE.
	$ deterministic polynomial space-bounded partial solution for non-LALR(k) testing.
	3) This can be converted to a total solution which
	deterministic polynomial space-bounded.
	4) this total solution can be used as LALR(k) testing.
	Regular expression nonuniversality
	Pnonuniv: "Given a regular expression E over V,
	is L(E)¹V*?"
	Noncomputations of M on input w means any string that does not represent a valid computation of M...
	We shall show that given any polynomial p, a p(n) space-bounded M, and w, the pair (M, w) can be ...
	V* \ L(E(M, p,w)) denotes accepting computation. Then
	M accepts w iff L(E(M, p,w)) ¹V*.
	Let M = (Q, S, G, P, qs, F, B, $). represent
	computation (g0, g1, ..., gn) as string g0...gn.
	any configuration gi is a string in $G* QG*$.
	E1(M) = e » ($G*QG*$)*(G»Q)V*
	» ($G*QG*$)*$(G»Q)*
	» ($G*QG*$)*$G*$V*
	» ($G*QG*$)*$G* Q(G»Q)*QG*$V*
	initial conf. $qsw$
	E2(M) =$G+QG*$V* » $(Q\{qs})G*$V* »$qsG*(G\S)G*$V*
	For M and w =a1...an in Sn, initial conf. $qsa1...an$
	E3(M,w)=$qs$V* » $qsS$V*» ...» $qsSn-1$V*
	» $qsSn+1S*$V*
	» $qs(S\{a1})S*$V*
	» $qsS(S\{a2})S*$V*» ...
	» $qsSn-1(S\{an})S*$V* .
	accepting conf. $aqb$, where qŒF.
	E4(M)=V*$G*(Q\F)G*$
	E1(M) » E2(M) »E3(M,w)»E4(M) denotes the set of those strings in V* that are not form
	g0...gn, g0 is the initial conf. gi is a conf.,gn is accepting conf.
	conf. shorter than s(|w|)
	E5(M,s,w)=V*$(G»Q)s(|w|)-1(G»Q)*$V*
	tape length, postion of state
	E6(M,s,w)=» { V*$GmQGn$$GkQGl$V* | m,n,k,l³0,
	0£m+n£s(|w|)-3, 0£k+l£s(|w|)-3,
	but none of conditions are satisfed: (a) k =m and l=n>0,
	(b) k = m +1 and l = n - 1,
	(c) k = m - 1 and l = n + 1 > 1,
	(d) k = m and l = n = 0,
	(e) k = m and l = n + 1 = 1,
	(f) k = m - 1 and l = n+ 1 = 1}
	Restrict our attention to strings denoted by
	(a) V*$GmQGn$$GmQGn$V*, where m ³0 , n > 0 (b) V*$GmQGn$$Gm+1QGn-1$V*, where m ³0, n > 0 (c) V*$G...
	(e) V*$GmQGn$$GmQG$V*, where m ³0 (f) V*$GmQGn$$Gm-1QG$V*, where m> 0
	In (a), (b), (c), m + n £ s(|w|) - 3,
	In (d), (e), (c), m + n £ s(|w|) - 3,
	tape symbol changed
	E7(M,s,w)
	=» { V*$GmaG*QG*$$Gm(G\{a})G*QG*$V* | aŒG, 0£m£s(|w|)-4} ,
	E7(M,s,w)
	=» { V*$G*aG+aQGn$$G*QG*(G\{a})Gn$V* | aŒG, 0£m£s(|w|)-4} ,
	Apply action
	Convention: q1,q2ŒQ, a, a1,a2, d1,d2 ŒG, m ³0,
	P denote set of actions of M
	Ea(M,s,w) =» { V*$Gmq1a1G*$$Gmq2a2G*$V* | m£s(|w|)-4, q1a1Æq2a2œP}
	Eb(M,s,w) =» { V*$Gmq1a1G*$$Gma2q2G*$V* | m£s(|w|)-4, q1a1Æa2q2œP} ,
	Ec(M,s,w) =» { V*$Gmd1q1a1G*$$Gmq2d2a2G*$V* | m£s(|w|)-5, d1q1a1Æq2d2a2œP}
	Ed(M,s,w) =» { V*$Gmq1$$Gmq2$V* | m£s(|w|)-3, q1$Æq2$ œP} ,
	Ee(M,s,w) =» { V*$Gmq1$$Gmq2a$V* | m£s(|w|)-3, q1$Æq2a$ œP} ,
	Ef(M,s,w) =» { V*$Gmd1q1$$Gmq2d2$V* | m£s(|w|)-4, d1q1$ Æ q2d2$œP} .
	Theorem 10.80 Let p be a polynomial, M a Turing machine that runs in space p(n), and w an input s...
	L(E(M,p,w)) = V*\{g0 g1 ...gn | n ³ 0,
	(g0 , ... , gn ) is an accepting computation
	of M on w having space complexity at
	most p( | w|) },
	where V is the alphabet of M. Moreover, the regular expression E(M,p,w) can be constructed from M...
	Theorem 10.81 (Stockmeyer and Meyer, 1973) Pnonuniv, regular expression nonuniversality, is PSPAC...
	Proof. To show that Pnonuniv is PSPACE-hard
	1) Choose any problem P in PSPACE,
	2) establish a polynomial-time reduction of
	P to Pnonuniv.
	Since P is in PSPACE it has a polynomial space- bounded solution. There exists a polynomial p and...
	M accepts input w iff w is a yes-instance of P.
	By T 10.80 there exists a polynomial time-bounded algorithm that transforms any input string w of...
	Establishing a polynomial-time reduction of r.e. nonuniversality to non-LALR(k) testing.
	r.e. nonuniversality reduces in polynomial time to
	"Given a right-linear grammar G with terminal
	T and with set of rules contains only rules of the forms AÆaB and AÆe, is L(G)¹T*?".
	We shall show that this problem reduces in polynomial time to non-LALR(k) testing.
	Let k³1 and G=(N»T, T, P, S) be a right-linear grammar. Further assume that the rules in P are of...
	terminals T » {c, d, f, g, h, (S^ ,S)} » P
	start symbol S^
	rules: S^ÆE1 | S (S^ ,S)| gE2
	E1ÆaE1, for all a ŒT,
	E1ÆH1dk | H2ck ,
	E2ÆH1ck | H2dk,
	AÆaB(A,aB), for all AÆaB in P
	AÆH3f k(A,e), for all AÆe in P
	H1Æh,
	H2Æh,
	H3Æh .
	Lemma 10.82 Let g be a string such that the state VALID0(g) in the LR(0) machine of the $-augment...
	Proof. Note that one of a and w must be a suffix of the other, and that a and w must suffixes of g.
	g:1 = a:1 =w:1.
	Denote g:1 by X.
	X¹S’^, S^, H1, H2, H3, f, g, symbol in N»T
	(No rule DÆw’Y, where Y is one of these)
	X¹E2, (S^ ,S),(A,e),(A,aB), where A, B Œ N, a ŒT
	(No two distinct item [C Æ aY·b] and [D Æ wY·] in the same state)
	X¹c, d
	([EiÆHjcm·ck-m] and [ElÆHrck·] in the same state
	implies they are equal.
	X¹E1
	([E1ÆaE1·] and [E1ÆbE1·], a¹b, cannot simultaneously be in VALID0(g); [S^ÆE1·] belongs only to VA...
	Thus X = h.
	Lemma 10.83 For all 0 £ n £ k and strings g the following hold for the $-augmented grammar of G^(...
	(a) VALIDn(g) contains an item of the form [C Æ a·E1b, y] iff g Œ $T*
	(b) VALIDn(g) contains an item of the form [C Æ a·Ab, y], A Œ N, iff g is of the form $w where w ...
	(c) VALIDn(g) contains an item of the form [C Æ a·E2b, y] iff C = S^, a = g, b = e, y = $, and g ...
	Lemma 10.84 Let 0 £ n £ k and let g be a string s.t. in the $-augmented grammar of G^(G,k),
	VALIDn(gh) ¹ Æ. Then g Œ $T* » $g. Moreover, VALIDn(gh) equals
	(1) {[H1 Æ h·, dn], [H2Æ h·, cn], [H3 Æ h·, f n]}
	if g Œ $L(G),
	(2) {[H1 Æ h·, dn], [H2 Æ h·, cn]}
	if g Œ $T*\$L(G),
	(3) {[H1 Æ h·, cn], [H2 Æ h·, dn]}
	if g = $g.
	Proof. VALIDn(gh) can only contain the items
	[H1 Æ h·, dn], [H1 Æ h·, cn],[H2Æ h·, cn], [H2Æ h·, dn], and [H3 Æ h·, f n].
	[H1 Æ h·, dn], [H2 Æ h·, cn]ŒVALIDn(gh)
	iff [CÆa·E1b, y]ŒVALIDn(g) iff g Œ $T*.
	[H3 Æ h·, f n]ŒVALIDn(gh)
	iff [CÆa·Ab, y]ŒVALIDn(g), where AÆe in G
	iff g is of the form $w where w Œ T, S ﬁ*wA in G
	[H1 Æ h·, cn], [H2 Æ h·, dn]ŒVALIDn(gh)
	iff [C Æ a·E2b, y] ŒVALIDn(g)
	iff C = S^, a = g, b = e, y = $, and g = $g
	Theorem 10.85 Let G be any right-linear grammar with terminal alphabet T and with a set of rules ...
	Then for all natural numbers k ³1, G^(G,k) is LR(1).
	G^(G,k) is LALR(1) if L(G) = T*, and
	non-LALR(k) if L(G) ¹ T*.
	Proof. Let g’1 and g’2 be strings, [C’Æa’·b’,y’] in VALID1(g’1) and [CÆw·, z] in VALID1(g’2) be t...
	Now if VALID0(g’1) =VALID0(g’2) then g’1=g1h, g’2=g2h. But then shows that G^(G,k) is LR(1).
	it is LALR(1) if L(G) =T*. L 10.84 show that
	if L(G)¹T*, then it cannot be LALR(k).
	Theorem 10.86 For each fixed natural number k ³ 1, the problems of non-LALR(k) testing and LALR(k...
	Theorem 10.87 For each fixed natural number k ³ 2, the problems of non-LALR(k) testing and LALL(k...
	Theorem 10.88 Grammar G can be tested for the non-LALR(k) and non-LALL(k) properties simultaneous...
	Theorem 10.89 The problem of uniform
	non-LALR(k), LALR(k), non-LALL(k), and LALL(k) testing are PSPACE-complete when k is expressed in...
	non-LALL(k) testing are NE-complete when k is expressed in binary.

