
CS322 3. Regular Expressions and Languages

1

nd Languages
.

 {}.

 .

 {a}.

E + F is
 of L(E) and L(F),

EF is
nation of L(E) and L(F),
9/21/16 Kwang-Moo Choe

Chap. 3 Regular Expressions a
3.1.2 Regular Expressions over some alphabet
Basis:

1. The constant  is a regular expression,
denoting the languages {}, i.e., L() =

2. The constant  is a regular expression,
denoting the languages , i.e., L() =

3. If a  , then a is a regular expression,
denoting the languages {a}, i.e., L(a) =

Induction:
1. If E and F are regular expressions, then

a regular expression, denoting union
i.e., L(E + F) = L(E)  L(F).

2. If E and F are regular expressions, then
a regular expression, denoting concate

CS322 3. Regular Expressions and Languages

2

regular expression,
 (L(E))*.

 regular expression,

ors

 S, if L(R) = L(S).
9/21/16 Kwang-Moo Choe

i.e., L(EF) = L(E)L(F).
3. If E is a regular expression, then E* is a

 denoting closure of L(E), i.e., L(E*) =
4. If E is a regular expression, then (E) is a

 denoting L(E), i.e., L((E)) = L(E).
Example 3.2 in p.89
3.1.3 Precedence of Regular Expression Operat

0. parenthesis
1. closure(*)
2. concatenation() or justaxaposed.
3. union(+)

Example 3.3 in p.91

Equivalence of regular expresssions
Let R, S be regular expressions. We say R =

CS322 3. Regular Expressions and Languages

3

then there is a regular

for some n.

|-1, m(i, m:w)  k}
D from state i to state j
igher than k.

k n by induction on k.
9/21/16 Kwang-Moo Choe

3.2 Finite Automata and Regular Expressions
3.2.1 From DFA’s to Regular Expressions
Theorem 3.4 If L = L(D) for some DFA D,
expressions R such that L = L(R).
Proof Let us suppose D’s states are {1, 2, …, n}
Let us Rij

k be a regular expression such that

L(Rij
k) = {w  *| |w|(i, w) = j, 1  m  |w

The RE Rij
k denotes the set of strings that take fa

without going through any state numbered h
When k=n, no restriction.

We can construct Rij
k 1 i n, 1 j n, and 0 

basis: k = 0, 1  i  n, 1  j  n.

CS322 3. Regular Expressions and Languages

4

 k  n, (i, ak) = j,
 k  n, (i, ak) = j,

1’s are known(I.H.).

j

9/21/16 Kwang-Moo Choe

Rij
0 = a1 + a2 + … + an if i  j, and 1 

= a1 + a2 + … + an +  if i = j and 1 
=  otherwise.

induction: Assume 1  i  n, 1  j  n, all Rij
k-

Rij
k = Rik

k-1 (Rkk
k-1)* Rkj

k-1 + Rij
k-1.

i

k

Rij
k-1

Rij
k

Rik
k-1

(Rkk
k-1)*

Rkj
k-1

k-1

CS322 3. Regular Expressions and Languages

5

al states.
 L.

R22
0 =  + 0 + 1

 + 1) + ( + 1)

= 1*.
0 + 0 = 1*0 + 0 = 1*0.

) + = .

 + 0 + 1 =  + 0 + 1.
9/21/16 Kwang-Moo Choe

Let s be the start state, and F = {f1, …, fg} be fin
R = Rsf1

n + Rsf2
n + … + Rsfg

n such that L(R) =

Example 3.5(p. 95-7) Figure 3.4
R11

0 =  + 1 R12
0 = 0 R21

0 = 

Rij
k = Rik

k-1 (Rkk
k-1)* Rkj

k-1 + Rij
k-1

k=1 Rij
1 = Ri1

0 (R11
0)* R1j

0 + Rij
0.

R11
1 = R11

0 (R11
0)* R11

0 + R11
0 = ( + 1)( + 1)*(

= ( + 1)1*( + 1) + ( + 1) = 1* + ( + 1)
R12

1 = R11
0 (R11

0)* R12
0 + R12

0 = ( + 1)( + 1)*

R21
1 = R21

0 (R11
0)* R11

0 + R21
0 = ( + 1)*( + 1

R22
1 = R21

0 (R11
0)* R12

0 + R22
0 = ( + 1)*0 + 

CS322 3. Regular Expressions and Languages

6

 + 1* = 1*.

 + 1)*.
 0 + 1)* +  = .

0 + 1 = (0 + 1)*.
9/21/16 Kwang-Moo Choe

k=2 Rij
2 = Ri2

1 (R22
1)* R2j

1 + Rij
1.

R11
2 = R12

1 (R22
1)* R21

1 + R11
1 = 1*0( + 0 + 1)*

R12
2 = R12

1 (R22
1)* R22

1 + R12
1

= 1*0( + 0 + 1)*( + 0 + 1) + 1*0 = 1*0(0
R21

2 = R22
1 (R22

1)* R21
1 + R21

1 = ( + 0 + 1)( +

R22
2 = R22

1 (R22
1)* R22

1 + R22
1

= ( + 0 + 1)( + 0 + 1)*( + 0 + 1) +  +

R = R12
2 = 1*0(0 + 1)*.

CS322 3. Regular Expressions and Languages

7

s by Eliminating States

ough s no longer exists.
9/21/16 Kwang-Moo Choe

3.2.2 Converting DFA’s to Regular Expression
Previous construction

n3 equations
O(4n) symbols in the regular expression

Eliminating states
If we eliminate state s, all paths that went th
labels: symbols  possibly infinite strings

 regular expression(closure)
simultaneous equations(연립방정식)

n-equations and n-variables
eliminating variables

CS322 3. Regular Expressions and Languages

8

lar expressions
is a regular equation

n
 + si. regular eq.

 + … + xm,

k) where xk  * and

i  F.

ns
9/21/16 Kwang-Moo Choe

Simultaneous equations for each state with regu
Let A = (Q, , , q0, F) be a FA and q  Q, Rq

1  i  n, Rqi
 = ri1Rq1

 + ri2Rq2
 + … + rinRq

where 1  j  n, m  0, rij = x1 + x2
for 1  k  m, qj  (qi, x

si = , if qi  F, and si = , if q

Note rij’s and si’s are constant regular expressio
and Rqi

’s are unknown variables.

Then n states(variables) and n equations.

CS322 3. Regular Expressions and Languages

9

(대입)

tion with variables.
9/21/16 Kwang-Moo Choe

We can solve the linear simultaneous equation
1. eliminate variables(states) by substitution
2. eliminate recursive variable by closure.

Let q = q +  where  and  are regular equa
q   or
q   + or
q   +  = 2 + or

q = * .

strange solution
q  1/(1-) 
 = (1 +  + 2 + …) 
  * .

CS322 3. Regular Expressions and Languages

10

 1*0(0 +1)*.
1)*.
9/21/16 Kwang-Moo Choe

Example 3.6 Figure 3.12(pp 101)
A = (0 +1)A + 1B
B = (0 +1)C
C = (0 +1)D + 
D = 

C = (0 +1) +  = 0 +1 + 
B = (0 +1)(0 +1 + ) = (0 +1)2 + (0 +1)
A = (0 +1)A + 1((0 +1)2 + (0 +1))
 = (0 +1)*1(0 +1)2 + (0 +1)*1(0 +1).

Example 3.5 revisited(p. 95)
A = 1A + 0B A = 1A + 0(0 +1)* =
B = (0 +1)B +  B = (0 +1)* = (0 +

CS322 3. Regular Expressions and Languages

11

 + 1)
 0(0 + 10)*1
 + 10)*1
= (0 + 10)B + 11A + 1

)*01
0 +1)*01

 0B + 1A + 1 = A + 1
01 = (0 +1)*01
9/21/16 Kwang-Moo Choe

DFA in Figure 2.14 (pp 63) revisited
A = 1A + 0B A = 1A + 0(0 + 10)*(11A

 = (1+ 0(0 + 10)*11)A +
 = (1+ 0(0 + 10)*11)*0(0

B = 0B + 1C B = 0B + 11A + 10B + 1
 = (0 + 10)*(11A + 1)

C = 1A + 0B + 
NFA Figure 2.9(pp 56)

C =  B = 1C = 1 = 1
A = (0 + 1)A + 0B = (0 + 1)A + 01 = (0 +1

 (1+ 0(0 + 10)*11)*0(0 + 10)*1 = (
DFA in Figure 2.14 (pp 63) revisited

C = 0B + 1A +  = A +  B = 0B + 1C =
A = 0B + 1A = 1A + 0A + 01 = (0 +1)A +

CS322 3. Regular Expressions and Languages

12

ata
ular expression is also

sion R.

a
3. a
9/21/16 Kwang-Moo Choe

3.2.3 Converting Regular Expressions to Autom
Theorem 3.7 Every language defined by a reg
defined by a finite automaton.
Proof Suppose L = L(R) for some regular expres

We show that L = L(E) for some -NFA E.
basis:


1.  2. 

CS322 3. Regular Expressions and Languages

13

1(0+1) in p. 106.





9/21/16 Kwang-Moo Choe

induction:

Example 3.8 and Fig. 3.18 -NFA for RE (0+1)*

R

S





R S


R







1. R + S

2. R S

3. R*

CS322 3. Regular Expressions and Languages

14

utative
iative
 is non-commutative
 is associative

ty for union
y for concatenation
ilator for concatenation

 distributes over union
9/21/16 Kwang-Moo Choe

3.4 Algebraic Laws for Regular Expressions
Let R, S, T be regular expressions over .

R + S = S + R union is comm
(R + S) + T = R + (S + T) union is assoc
RS  SR concatenation
(RS)T = R(ST) concatenation

 + R = R +  = R  is the identi
R = R = R  is the identit
R = R =   is the annih

R(S + T) = RS + RT concatenation
(S + T)R = SR + TR

CS322 3. Regular Expressions and Languages

15

potent
potent

 = .

f   R

(since   ).

ite) regular expression.
9/21/16 Kwang-Moo Choe

R + R = R Union is idem
(R*)* = R* Closure is idem

* =  * =  but + =  +

R+ = RR* = R*R.
R* = R+ +  but R+  R*  {}, i

* = + +  and + = *  {}

Theorem 3.A Any finite language is regular.
Proof Any finite language can be denoted by (fin

union and concatenation.
no closure finite

CS322 3. Regular Expressions and Languages

16

tion .
ction .

TBD in Chap. 5)
9/21/16 Kwang-Moo Choe

Following statements are logically equivalent
1. L is regular.
2. L = L(D) for some DFA D with total func
3. L = L(P) for some DFA P with partial fun
4. L = L(N) for some NFA N.
5. L = L(E) for some -NFA E.
6. L = L(X) for some XFA X.
7. L = L(R) for some RE R.

Following statements are logically equivalent
1. L is regular.
2. L = L(A) for some finite automaton A.
3. L = L(R) for some regular expression R.
4. L = L(G) for some regular grammar G. (

CS322 3. Regular Expressions and Languages

17

ages = Finite Automata
hap. 5)

guages 2
*

regular
L

mars

egular
G

9/21/16 Kwang-Moo Choe

Chomsky’s type 3 Languages = Regular Langu
= Regular Expressions = Regular Grammars(C

Automata

DFA

Expressions

XFA=FA L

L

regular

NFA
-NFA

R

D

X

Lan

Gram

r

	Chap. 3 Regular Expressions and Languages
	3.1.2 Regular Expressions over some alphabet S.
	Basis:
	1. The constant e is a regular expression,
	denoting the languages {e}, i.e., L(e) = {e}.
	2. The constant Æ is a regular expression,
	denoting the languages Æ, i.e., L(Æ) = Æ.
	3. If a Œ S, then a is a regular expression,
	denoting the languages {a}, i.e., L(a) = {a}.
	Induction:
	1. If E and F are regular expressions, then E + F is
	a regular expression, denoting union of L(E) and L(F),
	i.e., L(E + F) = L(E) » L(F).
	2. If E and F are regular expressions, then EF is
	a regular expression, denoting concatenation of L(E) and L(F),
	i.e., L(EF) = L(E)L(F).
	3. If E is a regular expression, then E* is a regular expression,
	denoting closure of L(E), i.e., L(E*) = (L(E))*.
	4. If E is a regular expression, then (E) is a regular expression,
	denoting L(E), i.e., L((E)) = L(E).
	Example 3.2 in p.89
	3.1.3 Precedence of Regular Expression Operators
	0. parenthesis
	1. closure(*)
	2. concatenation(×) or justaxaposed.
	3. union(+)
	Example 3.3 in p.91
	Equivalence of regular expresssions
	Let R, S be regular expressions. We say R = S, if L(R) = L(S).
	3.2 Finite Automata and Regular Expressions
	3.2.1 From DFA’s to Regular Expressions
	Theorem 3.4 If L = L(D) for some DFA D, then there is a regular expressions R such that L = L(R).
	Proof Let us suppose D’s states are {1, 2, …, n} for some n.
	Let us Rijk be a regular expression such that
	L(Rijk) = {w Œ S*| d|w|(i, w) = j, 1 £ "m £ |w|-1, dm(i, m:w) £ k}
	The RE Rijk denotes the set of strings that take fa D from state i to state j
	without going through any state numbered higher than k.
	When k=n, no restriction.
	We can construct Rijk 1 £"i£ n, 1 £"j£ n, and 0 £"k£ n by induction on k.
	basis: k = 0, 1 £ "i £ n, 1 £ "j £ n.
	Rij0 = a1 + a2 + … + an if i ¹ j, and 1 £ "k £ n, d(i, ak) = j,
	= a1 + a2 + … + an + e if i = j and 1 £ "k £ n, d(i, ak) = j,
	= Æ otherwise.
	induction: Assume 1 £ "i £ n, 1 £ "j £ n, all Rijk-1’s are known(I.H.).
	Rijk = Rikk-1 (Rkkk-1)* Rkjk-1 + Rijk-1.
	Let s be the start state, and F = {f1, …, fg} be final states.
	R = Rsf1n + Rsf2n + … + Rsfgn such that L(R) = L.
	Example 3.5(p. 95-7) Figure 3.4
	R110 = e + 1 R120 = 0 R210 = Æ R220 = e + 0 + 1
	Rijk = Rikk-1 (Rkkk-1)* Rkjk-1 + Rijk-1
	k=1 Rij1 = Ri10 (R110)* R1j0 + Rij0.
	R111 = R110 (R110)* R110 + R110 = (e + 1)(e + 1)*(e + 1) + (e + 1)
	= (e + 1)1*(e + 1) + (e + 1) = 1* + (e + 1) = 1*.
	R121 = R110 (R110)* R120 + R120 = (e + 1)(e + 1)*0 + 0 = 1*0 + 0 = 1*0.
	R211 = R210 (R110)* R110 + R210 = Æ(e + 1)*(e + 1) + Æ = Æ.
	R221 = R210 (R110)* R120 + R220 = Æ(e + 1)*0 + e + 0 + 1 = e + 0 + 1.
	k=2 Rij2 = Ri21 (R221)* R2j1 + Rij1.
	R112 = R121 (R221)* R211 + R111 = 1*0(e + 0 + 1)*Æ + 1* = 1*.
	R122 = R121 (R221)* R221 + R121
	= 1*0(e + 0 + 1)*(e + 0 + 1) + 1*0 = 1*0(0 + 1)*.
	R212 = R221 (R221)* R211 + R211 = (e + 0 + 1)(e + 0 + 1)*Æ + Æ = Æ.
	R222 = R221 (R221)* R221 + R221
	= (e + 0 + 1)(e + 0 + 1)*(e + 0 + 1) + e + 0 + 1 = (0 + 1)*.
	R = R122 = 1*0(0 + 1)*.
	3.2.2 Converting DFA’s to Regular Expressions by Eliminating States
	Previous construction
	n3 equations
	O(4n) symbols in the regular expression
	Eliminating states
	If we eliminate state s, all paths that went though s no longer exists.
	labels: symbols Æ possibly infinite strings
	Æ regular expression(closure)
	simultaneous equations(ø¨¸³¹Ê¡§½ƒ)
	n-equations and n-variables
	eliminating variables
	Simultaneous equations for each state with regular expressions
	Let A = (Q, S, d, q0, F) be a FA and "q Œ Q, Rq is a regular equation
	1 £ "i £ n, Rqi = ri1Rq1 + ri2Rq2 + … + rinRqn + si. regular eq.
	where 1 £ "j £ n, $m ³ 0, rij = x1 + x2 + … + xm,
	for 1 £ "k £ m, qj Œ d(qi, xk) where xk Œ S* and
	si = e, if qi Œ F, and si = Æ, if qi œ F.
	Note rij’s and si’s are constant regular expressions
	and Rqi’s are unknown variables.
	Then n states(variables) and n equations.
	We can solve the linear simultaneous equation
	1. eliminate variables(states) by substitution(¥Î¿‘)
	2. eliminate recursive variable by closure.
	Let q = aq + b where a and b are regular equation with variables.
	q ﬁ b or
	q ﬁ a + b or
	q ﬁ aa + b = a2 + b or
	...
	q = a* b.
	strange solution
	q ¹ 1/(1-a) b
	= (1 + a + a2 + …) b
	¹ a* b.
	Example 3.6 Figure 3.12(pp 101)
	A = (0 +1)A + 1B
	B = (0 +1)C
	C = (0 +1)D + e
	D = e
	C = (0 +1)e + e = 0 +1 + e
	B = (0 +1)(0 +1 + e) = (0 +1)2 + (0 +1)
	A = (0 +1)A + 1((0 +1)2 + (0 +1))
	= (0 +1)*1(0 +1)2 + (0 +1)*1(0 +1).
	Example 3.5 revisited(p. 95)
	A = 1A + 0B A = 1A + 0(0 +1)* = 1*0(0 +1)*.
	B = (0 +1)B + e B = (0 +1)*e = (0 +1)*.
	DFA in Figure 2.14 (pp 63) revisited
	A = 1A + 0B A = 1A + 0(0 + 10)*(11A + 1)
	= (1+ 0(0 + 10)*11)A + 0(0 + 10)*1
	= (1+ 0(0 + 10)*11)*0(0 + 10)*1
	B = 0B + 1C B = 0B + 11A + 10B + 1 = (0 + 10)B + 11A + 1
	= (0 + 10)*(11A + 1)
	C = 1A + 0B + e
	NFA Figure 2.9(pp 56)
	C = e B = 1C = 1e = 1
	A = (0 + 1)A + 0B = (0 + 1)A + 01 = (0 +1)*01
	\ (1+ 0(0 + 10)*11)*0(0 + 10)*1 = (0 +1)*01
	DFA in Figure 2.14 (pp 63) revisited
	C = 0B + 1A + e = A + e B = 0B + 1C = 0B + 1A + 1e = A + 1
	A = 0B + 1A = 1A + 0A + 01 = (0 +1)A + 01 = (0 +1)*01
	3.2.3 Converting Regular Expressions to Automata
	Theorem 3.7 Every language defined by a regular expression is also defined by a finite automaton.
	Proof Suppose L = L(R) for some regular expression R.
	We show that L = L(E) for some e-NFA E.
	basis:
	induction:
	Example 3.8 and Fig. 3.18 e-NFA for RE (0+1)*1(0+1) in p. 106.
	3.4 Algebraic Laws for Regular Expressions
	Let R, S, T be regular expressions over S.
	R + S = S + R union is commutative
	(R + S) + T = R + (S + T) union is associative
	RS ¹ SR concatenation is non-commutative
	(RS)T = R(ST) concatenation is associative
	Æ + R = R + Æ = R Æ is the identity for union
	eR = Re = R e is the identity for concatenation
	ÆR = RÆ = Æ Æ is the annihilator for concatenation
	R(S + T) = RS + RT concatenation distributes over union
	(S + T)R = SR + TR
	R + R = R Union is idempotent
	(R*)* = R* Closure is idempotent
	Æ* = e e* = e but Æ+ = Æ e+ = e.
	R+ = RR* = R*R.
	R* = R+ + e but R+ ¹ R* - {e}, if e Œ R.
	S* = S+ + e and S+ = S* - {e} (since e œ S).
	Theorem 3.A Any finite language is regular.
	Proof Any finite language can be denoted by (finite) regular expression.
	union and concatenation.
	no closure finite
	Following statements are logically equivalent
	1. L is regular.
	2. L = L(D) for some DFA D with total function d.
	3. L = L(P) for some DFA P with partial function d.
	4. L = L(N) for some NFA N.
	5. L = L(E) for some e-NFA E.
	6. L = L(X) for some XFA X.
	7. L = L(R) for some RE R.
	Following statements are logically equivalent
	1. L is regular.
	2. L = L(A) for some finite automaton A.
	3. L = L(R) for some regular expression R.
	4. L = L(G) for some regular grammar G. (TBD in Chap. 5)
	Chomsky’s type 3 Languages = Regular Languages = Finite Automata = Regular Expressions = Regular ...
	Automata

