CS522 3. Regular Expressions and Languages

Chap. 3 Regular Expressions and Languages

3.1.2 Regular Expressions over some alphabet .
Basis:
1. The constant ¢ is a regular expression,
denoting the languages {c}, I.e., L(¢) = {&}.
2. The constant O Is a regular expression,
denoting the languages ¢, I.e., L(J) = O.
3.1fa € X, then a Is a regular expression,
denoting the languages {a}, i.e., L(a) = {a}.
Induction:
1. If E and F are regular expressions, then E + F is
a regular expression, denoting union of L(E) and L(F),
l.e.,, L(E+ F) =L(E) u L(F).
2. If E and F are regular expressions, then EF is
a regular expression, denoting concatenation of L(E) and L(F),

9/21/16 Kwang-Moo Choe 1

CS522 3. Regular Expressions and Languages

l.e., L(EF) = L(E)L(F).
3. If E is a regular expression, then E” is a regular expression,
denoting closure of L(E), i.e., L(E") = (L(E)) .
4. If E 1s a regular expression, then (E) iIs a regular expression,
denoting L(E), i.e., L((E)) = L(E).
Example 3.2 in p.89
3.1.3 Precedence of Regular Expression Operators
0. parenthesis
1. closure(*)
2. concatenation(-) or justaxaposed.
3. union(+)
Example 3.3 in p.91

Equivalence of regular expresssions
Let R, S be regular expressions. We say R =S, if L(R) = L(S).

9/21/16 Kwang-Moo Choe 2

CS522 3. Regular Expressions and Languages

3.2 Finite Automata and Regular Expressions

3.2.1 From DFA’s to Regular Expressions

Theorem 3.4 If L = L(D) for some DFA D, then there is a regular
expressions R such that L = L(R).

Proof Let us suppose D’s states are {1, 2, ..., n} for some n.

Let us Rijk be a regular expression such that
LR = {w e =] 8MI(i, w) =], 1 < m < |w|-1, 3G, m:w) <k}
The RE Rijk denotes the set of strings that take fa D from state i to state |

without going through any state numbered higher than k.
When k=n, no restriction.

We can construct Rijk 1<Vi<n, 1<Vj<n, and 0 <¥k< n by induction on k.

basis: k=0,1<vi<n,1<Vj<n.

9/21/16 Kwang-Moo Choe 3

CS522 3. Regular Expressions and Languages

RO =aj+ay+.. +a, ifi =], and 1 <Vk<n,5(i, a) =],
—a;+a,+..+a,+¢ ifi=jand 1< Vk<n, (i, a) =],
= otherwise.

induction: Assume 1<Vi<n,1<9j<n,all Rijk'l’s are known(l.H.).

Rijk — Rikk-l (Rkkk-l)* Rkjk-l + Rijk-l'

(Ry;f'\l)*
GO
Ri K- k-1

9/21/16 Kwang-Moo Choe 4

CS522 3. Regular Expressions and Languages

Let s be the start state, and F = {fy, ..., fy} be final states.
R = Rsfln + RSfZ” + ...+ R;"suchthat L(R) = L.
g

Example 3.5(p. 95-7) Figure 3.4
R°=e+1 Rp°=0 Ry’ = & R,C=¢e+0+1
Rijk — Rikk-l (Rkkk-l)* Rkjk-l + Rijk-l

k=1 Ri' =R Ry") RP + R

RA=RLOR) R O+RO=(e+1)(e+1) (e +1)+(c+1)
=+ e+ +(+)=1"+(E+1)=1"

R =RO (RO R +R= (e+1)(e+1)0+0=10+0= 1°0.

Ryit =Ry, (Rllo)* R.?+R,°=(e+ N(e+1)+20=0

R,E =R PR RO+R.0= D(e+1)0+e+0+1=g+0+1.

9/21/16 Kwang-Moo Choe 5

CS522 3. Regular Expressions and Languages
k=2 Rj? =R (Ryp)) Ry + Ry
Ri2= Rt (Rpt) Ryt + R 1=10(e +0+ 1)@ +1 =1,
R,* =Ry} (Rzzl)* Ryt + Ryt

— 1*0(8 + 0+ 1)*(8 +0+ 1)+ 170 = 1*0(0 + 1)*_
Ry 2 = Rypt (Rp) Ryl + Ry 1= (e +0+ 1)(e+0+ 1)@+ D =0.
Ryo® = Ryt (Ryy!)” Ryt + Ryt

=c+0+DE+0+1) (c+0+1)+eg+0+1=(0+1)"

R=R,2=10(0+1)".

9/21/16 Kwang-Moo Choe 6

CS522 3. Regular Expressions and Languages

3.2.2 Converting DFA’s to Regular Expressions by Eliminating States
Previous construction

n® equations
O(4") symbols in the regular expression
Eliminating states
If we eliminate state s, all paths that went though s no longer exists.
labels: symbols — possibly infinite strings
— regular expression(closure)
simultaneous equations(¢7 & 254/)
n-equations and n-variables
eliminating variables

9/21/16 Kwang-Moo Choe 7

CS522 3. Regular Expressions and Languages

Simultaneous equations for each state with regular expressions
Let A=(Q, X, 8,0y, F) beaFAand Vg € Q, Ry is a regular equation

1<Vi<n, Ry = 1Ry, + ri2Ry + ... +ripRy +s;. regular eq.
where 1 <7j<n, " m >0, rjj = X; + Xp + ... + Xp,

for 1 < vk <m, g; € 8(q;, X) where x, € =" and
si—e¢, ifgie F,andsi= 9, if g; ¢ F.

Note rj;’s and s;’s are constant regular expressions
and Rq_’s are unknown variables.
|

Then n states(variables) and n equations.

9/21/16 Kwang-Moo Choe 8

CS522 3. Regular Expressions and Languages

We can solve the linear simultaneous equation

1. eliminate variables(states) by substitution(z/ ¢/)
2. eliminate recursive variable by closure.

Let g = ag + B where o and 3 are regular equation with variables.
q=por
q=>a+por

q:>a0L+B=oc2+Bor

q=a .

strange solution
q=1/(1-o)
=(1+a+a’+)P
£ B.

9/21/16 Kwang-Moo Choe 9

CS522 3. Regular Expressions and Languages

Example 3.6 Figure 3.12(pp 101)
A=(0+1)A+1B
B=(0+1)C
C=(0+1)D+c¢
D=c¢

C=0+1lec+e=0+1+¢
B =(0+1)(0 +1 + &) = (0 +1)% + (0 +1)
A= (0 +1)A + 1((0 +1)? + (0 +1))

= (0 +1)"1(0 +1)% + (0 +1)"1(0 +1).

Example 3.5 revisited(p. 95)
A=1A + OB A=1A+0(0+1) =100 +1)".
B=(0+1)B+c¢ B=(0+1)e=(0+1)".

9/21/16 Kwang-Moo Choe 10

CS522 3. Regular Expressions and Languages

DFA in Figure 2.14 (pp 63) revisited
A=1A+0B A=1A+0(0+ 10)"(11A +1)
= (1+ 0(0 + 10) 11)A + 0(0 + 10) "1
= (1+ 0(0 + 10)"11) 0(0 + 10)"1
B=0B+1C B=0B+11A+10B+1=(0+10B+11A+1
= (0 + 10) (11A + 1)
C=1A+0B+¢
NFA Figure 2.9(pp 56)
C=¢ B=1C=1le=1
A=0+1)A+0B=(0+1)A+01=(0+1)01
-, (1+ 0(0 + 10)"11)°0(0 + 10) "1 = (0 +1) 01
DFA in Figure 2.14 (pp 63) revisited
C=0B+1A+e=A+g¢ B=0B+1C=0B+1A+1lc=A+1

A=0B+1A=1A+0A+01=(0+1)A+01=(0+1)01

9/21/16 Kwang-Moo Choe 11

CS522 3. Regular Expressions and Languages

3.2.3 Converting Regular Expressions to Automata
Theorem 3.7 Every language defined by a regular expression is also
defined by a finite automaton.
Proof Suppose L = L(R) for some regular expression R.
We show that L = L(E) for some e-NFA E.

basis:
-0 O O VO
1. ¢ 2. 3.a

9/21/16 Kwang-Moo Choe 12

CS522 3. Regular Expressions and Languages

Induction:

1.R+S

2.RS

3.R

Example 3.8 and Fig. 3.18 e-NFA for RE (0+1)"1(0+1) in p. 106.

9/21/16 Kwang-Moo Choe 13

CS522 3. Regular Expressions and Languages

3.4 Algebraic Laws for Regular Expressions
Let R, S, T be regular expressions over X.

R+S=S+R union Is commutative
(R+S)+T=R+(S+T) union isassociative

RS # SR concatenation is non-commutative
(RS)T = R(ST) concatenation is associative
+R=R+J =R & 1s the identity for union
eER=Re=R ¢ IS the 1dentity for concatenation
R=RJ = & 1s the annihilator for concatenation
R(S+T)=RS+RT concatenation distributes over union

(S+T)R=SR+ TR

9/21/16 Kwang-Moo Choe 14

CS522 3. Regular Expressions and Languages

R+R=R Union is idempotent

(R =R" Closure is idempotent

B =g ¢ =¢ but =g ¢ =¢
R*=RR" =R'R.

R"=R" +¢ but R* #R™ — {g}, if¢ € R.

S =3t +¢ and = =3" — {e} (since ¢ ¢ 3).

Theorem 3.A Any finite language Is regular.

Proof Any finite language can be denoted by (finite) regular expression.
union and concatenation.
no closure finite

9/21/16 Kwang-Moo Choe 15

CS522 3. Regular Expressions and Languages

Following statements are logically equivalent
1. L is regular.
. L = L(D) for some DFA D with total function 9.
. L = L(P) for some DFA P with partial function o.
. L =L(N) for some NFA N.
. L =L(E) for some e-NFA E.
. L = L(X) for some XFA X.
. L =L(R) for some RE R.

~N O O b Wb

Following statements are logically equivalent
1. L is regular.
2. L = L(A) for some finite automaton A.
3. L = L(R) for some regular expression R.
4. L = L(G) for some regular grammar G. (TBD in Chap. 5)

9/21/16 Kwang-Moo Choe 16

CS522 3. Regular Expressions and Languages

Chomsky’s type 3 Languages = Regular Languages = Finite Automata
= Regular Expressions = Regular Grammars(Chap. 5)

—_Automata — F—
} XFA:F%] Languages 2*
B \

————aregular

NFA

DEA —

Q==
= _—

/ Grammars

regullar

e

9/21/16 Kwang-Moo Choe 17

——EXpressions

	Chap. 3 Regular Expressions and Languages
	3.1.2 Regular Expressions over some alphabet S.
	Basis:
	1. The constant e is a regular expression,
	denoting the languages {e}, i.e., L(e) = {e}.
	2. The constant Æ is a regular expression,
	denoting the languages Æ, i.e., L(Æ) = Æ.
	3. If a Œ S, then a is a regular expression,
	denoting the languages {a}, i.e., L(a) = {a}.
	Induction:
	1. If E and F are regular expressions, then E + F is
	a regular expression, denoting union of L(E) and L(F),
	i.e., L(E + F) = L(E) » L(F).
	2. If E and F are regular expressions, then EF is
	a regular expression, denoting concatenation of L(E) and L(F),
	i.e., L(EF) = L(E)L(F).
	3. If E is a regular expression, then E* is a regular expression,
	denoting closure of L(E), i.e., L(E*) = (L(E))*.
	4. If E is a regular expression, then (E) is a regular expression,
	denoting L(E), i.e., L((E)) = L(E).
	Example 3.2 in p.89
	3.1.3 Precedence of Regular Expression Operators
	0. parenthesis
	1. closure(*)
	2. concatenation(×) or justaxaposed.
	3. union(+)
	Example 3.3 in p.91
	Equivalence of regular expresssions
	Let R, S be regular expressions. We say R = S, if L(R) = L(S).
	3.2 Finite Automata and Regular Expressions
	3.2.1 From DFA’s to Regular Expressions
	Theorem 3.4 If L = L(D) for some DFA D, then there is a regular expressions R such that L = L(R).
	Proof Let us suppose D’s states are {1, 2, …, n} for some n.
	Let us Rijk be a regular expression such that
	L(Rijk) = {w Œ S*| d|w|(i, w) = j, 1 £ "m £ |w|-1, dm(i, m:w) £ k}
	The RE Rijk denotes the set of strings that take fa D from state i to state j
	without going through any state numbered higher than k.
	When k=n, no restriction.
	We can construct Rijk 1 £"i£ n, 1 £"j£ n, and 0 £"k£ n by induction on k.
	basis: k = 0, 1 £ "i £ n, 1 £ "j £ n.
	Rij0 = a1 + a2 + … + an if i ¹ j, and 1 £ "k £ n, d(i, ak) = j,
	= a1 + a2 + … + an + e if i = j and 1 £ "k £ n, d(i, ak) = j,
	= Æ otherwise.
	induction: Assume 1 £ "i £ n, 1 £ "j £ n, all Rijk-1’s are known(I.H.).
	Rijk = Rikk-1 (Rkkk-1)* Rkjk-1 + Rijk-1.
	Let s be the start state, and F = {f1, …, fg} be final states.
	R = Rsf1n + Rsf2n + … + Rsfgn such that L(R) = L.
	Example 3.5(p. 95-7) Figure 3.4
	R110 = e + 1 R120 = 0 R210 = Æ R220 = e + 0 + 1
	Rijk = Rikk-1 (Rkkk-1)* Rkjk-1 + Rijk-1
	k=1 Rij1 = Ri10 (R110)* R1j0 + Rij0.
	R111 = R110 (R110)* R110 + R110 = (e + 1)(e + 1)*(e + 1) + (e + 1)
	= (e + 1)1*(e + 1) + (e + 1) = 1* + (e + 1) = 1*.
	R121 = R110 (R110)* R120 + R120 = (e + 1)(e + 1)*0 + 0 = 1*0 + 0 = 1*0.
	R211 = R210 (R110)* R110 + R210 = Æ(e + 1)*(e + 1) + Æ = Æ.
	R221 = R210 (R110)* R120 + R220 = Æ(e + 1)*0 + e + 0 + 1 = e + 0 + 1.
	k=2 Rij2 = Ri21 (R221)* R2j1 + Rij1.
	R112 = R121 (R221)* R211 + R111 = 1*0(e + 0 + 1)*Æ + 1* = 1*.
	R122 = R121 (R221)* R221 + R121
	= 1*0(e + 0 + 1)*(e + 0 + 1) + 1*0 = 1*0(0 + 1)*.
	R212 = R221 (R221)* R211 + R211 = (e + 0 + 1)(e + 0 + 1)*Æ + Æ = Æ.
	R222 = R221 (R221)* R221 + R221
	= (e + 0 + 1)(e + 0 + 1)*(e + 0 + 1) + e + 0 + 1 = (0 + 1)*.
	R = R122 = 1*0(0 + 1)*.
	3.2.2 Converting DFA’s to Regular Expressions by Eliminating States
	Previous construction
	n3 equations
	O(4n) symbols in the regular expression
	Eliminating states
	If we eliminate state s, all paths that went though s no longer exists.
	labels: symbols Æ possibly infinite strings
	Æ regular expression(closure)
	simultaneous equations(ø¨¸³¹Ê¡§½ƒ)
	n-equations and n-variables
	eliminating variables
	Simultaneous equations for each state with regular expressions
	Let A = (Q, S, d, q0, F) be a FA and "q Œ Q, Rq is a regular equation
	1 £ "i £ n, Rqi = ri1Rq1 + ri2Rq2 + … + rinRqn + si. regular eq.
	where 1 £ "j £ n, $m ³ 0, rij = x1 + x2 + … + xm,
	for 1 £ "k £ m, qj Œ d(qi, xk) where xk Œ S* and
	si = e, if qi Œ F, and si = Æ, if qi œ F.
	Note rij’s and si’s are constant regular expressions
	and Rqi’s are unknown variables.
	Then n states(variables) and n equations.
	We can solve the linear simultaneous equation
	1. eliminate variables(states) by substitution(¥Î¿‘)
	2. eliminate recursive variable by closure.
	Let q = aq + b where a and b are regular equation with variables.
	q ﬁ b or
	q ﬁ a + b or
	q ﬁ aa + b = a2 + b or
	...
	q = a* b.
	strange solution
	q ¹ 1/(1-a) b
	= (1 + a + a2 + …) b
	¹ a* b.
	Example 3.6 Figure 3.12(pp 101)
	A = (0 +1)A + 1B
	B = (0 +1)C
	C = (0 +1)D + e
	D = e
	C = (0 +1)e + e = 0 +1 + e
	B = (0 +1)(0 +1 + e) = (0 +1)2 + (0 +1)
	A = (0 +1)A + 1((0 +1)2 + (0 +1))
	= (0 +1)*1(0 +1)2 + (0 +1)*1(0 +1).
	Example 3.5 revisited(p. 95)
	A = 1A + 0B A = 1A + 0(0 +1)* = 1*0(0 +1)*.
	B = (0 +1)B + e B = (0 +1)*e = (0 +1)*.
	DFA in Figure 2.14 (pp 63) revisited
	A = 1A + 0B A = 1A + 0(0 + 10)*(11A + 1)
	= (1+ 0(0 + 10)*11)A + 0(0 + 10)*1
	= (1+ 0(0 + 10)*11)*0(0 + 10)*1
	B = 0B + 1C B = 0B + 11A + 10B + 1 = (0 + 10)B + 11A + 1
	= (0 + 10)*(11A + 1)
	C = 1A + 0B + e
	NFA Figure 2.9(pp 56)
	C = e B = 1C = 1e = 1
	A = (0 + 1)A + 0B = (0 + 1)A + 01 = (0 +1)*01
	\ (1+ 0(0 + 10)*11)*0(0 + 10)*1 = (0 +1)*01
	DFA in Figure 2.14 (pp 63) revisited
	C = 0B + 1A + e = A + e B = 0B + 1C = 0B + 1A + 1e = A + 1
	A = 0B + 1A = 1A + 0A + 01 = (0 +1)A + 01 = (0 +1)*01
	3.2.3 Converting Regular Expressions to Automata
	Theorem 3.7 Every language defined by a regular expression is also defined by a finite automaton.
	Proof Suppose L = L(R) for some regular expression R.
	We show that L = L(E) for some e-NFA E.
	basis:
	induction:
	Example 3.8 and Fig. 3.18 e-NFA for RE (0+1)*1(0+1) in p. 106.
	3.4 Algebraic Laws for Regular Expressions
	Let R, S, T be regular expressions over S.
	R + S = S + R union is commutative
	(R + S) + T = R + (S + T) union is associative
	RS ¹ SR concatenation is non-commutative
	(RS)T = R(ST) concatenation is associative
	Æ + R = R + Æ = R Æ is the identity for union
	eR = Re = R e is the identity for concatenation
	ÆR = RÆ = Æ Æ is the annihilator for concatenation
	R(S + T) = RS + RT concatenation distributes over union
	(S + T)R = SR + TR
	R + R = R Union is idempotent
	(R*)* = R* Closure is idempotent
	Æ* = e e* = e but Æ+ = Æ e+ = e.
	R+ = RR* = R*R.
	R* = R+ + e but R+ ¹ R* - {e}, if e Œ R.
	S* = S+ + e and S+ = S* - {e} (since e œ S).
	Theorem 3.A Any finite language is regular.
	Proof Any finite language can be denoted by (finite) regular expression.
	union and concatenation.
	no closure finite
	Following statements are logically equivalent
	1. L is regular.
	2. L = L(D) for some DFA D with total function d.
	3. L = L(P) for some DFA P with partial function d.
	4. L = L(N) for some NFA N.
	5. L = L(E) for some e-NFA E.
	6. L = L(X) for some XFA X.
	7. L = L(R) for some RE R.
	Following statements are logically equivalent
	1. L is regular.
	2. L = L(A) for some finite automaton A.
	3. L = L(R) for some regular expression R.
	4. L = L(G) for some regular grammar G. (TBD in Chap. 5)
	Chomsky’s type 3 Languages = Regular Languages = Finite Automata = Regular Expressions = Regular ...
	Automata

