Chap. 3 Regular Expressions and Languages

3.1.2 Regular Expressions over some alphabet Σ . Basis:

- 1. The constant ε is a regular expression, denoting the languages $\{\varepsilon\}$, i.e., $L(\varepsilon) = \{\varepsilon\}$.
- 2. The constant \emptyset is a regular expression, denoting the languages \emptyset , i.e., $L(\emptyset) = \emptyset$.
- 3. If $a \in \Sigma$, then **a** is a **regular expression**, denoting the languages $\{a\}$, i.e., $L(\mathbf{a}) = \{a\}$.

Induction:

- 1. If E and F are regular expressions, then E + F is a regular expression, denoting union of L(E) and L(F), i.e., $L(E + F) = L(E) \cup L(F)$.
- 2. If E and F are regular expressions, then EF is a regular expression, denoting concatenation of L(E) and L(F),

i.e.,
$$L(EF) = L(E)L(F)$$
.

- 3. If E is a regular expression, then E^* is a regular expression, denoting closure of L(E), i.e., $L(E^*) = (L(E))^*$.
- 4. If E is a regular expression, then (E) is a regular expression, denoting L(E), i.e., L((E)) = L(E).

Example 3.2 in p.89

3.1.3 Precedence of Regular Expression Operators

- 0. parenthesis
- 1. closure(*)
- 2. $concatenation(\cdot)$ or just axaposed.
- *3. union*(+)

Example 3.3 in p.91

Equivalence of regular expresssions

Let R, S be regular expressions. We say R = S, if L(R) = L(S).

3.2 Finite Automata and Regular Expressions

3.2.1 From DFA's to Regular Expressions

Theorem 3.4 If L = L(D) for some DFA D, then there is a **regular** expressions R such that L = L(R).

Proof Let us suppose D's states are $\{1, 2, ..., n\}$ for some n.

Let us R_{ij}^{k} be a **regular expression** such that

$$L(R_{ij}^{k}) = \{ w \in \Sigma^{*} / \delta^{/w/}(i, w) = j, 1 \le \forall m \le /w/-1, \delta^{m}(i, m:w) \le k \}$$

The RE R_{ij}^k denotes the set of strings that take fa D from state i to state j without going through any state numbered higher than k. When k=n, no **restriction**.

We can construct $R_{ij}^{\ k}$ $1 \le \forall i \le n$, $1 \le \forall j \le n$, and $0 \le \forall k \le n$ by **induction** on k. **basis**: k = 0, $1 \le \forall i \le n$, $1 \le \forall j \le n$.

$$R_{ij}^{0} = \mathbf{a}_{1} + \mathbf{a}_{2} + \dots + \mathbf{a}_{n}$$
 if $i \neq j$, and $1 \leq \forall k \leq n$, $\delta(i, a_{k}) = j$, $= \mathbf{a}_{1} + \mathbf{a}_{2} + \dots + \mathbf{a}_{n} + \varepsilon$ if $i = j$ and $1 \leq \forall k \leq n$, $\delta(i, a_{k}) = j$, $= \emptyset$ otherwise.

induction: Assume $1 \leq \forall i \leq n, \ 1 \leq \forall j \leq n, \ all \ R_{ij}^{k-1}$'s are known(I.H.).

$$R_{ij}^{k} = R_{ik}^{k-1} (R_{kk}^{k-1})^{*} R_{kj}^{k-1} + R_{ij}^{k-1}.$$

Let s be the **start** state, and $F = \{f_1, ..., f_g\}$ be final states.

$$R = R_{sf_1}^n + R_{sf_2}^n + \dots + R_{sf_g}^n$$
 such that $L(R) = L$.

Example 3.5(p. 95-7) Figure 3.4

$$R_{II}{}^{0} = \varepsilon + \mathbf{1} \qquad R_{I2}{}^{0} = \mathbf{0} \qquad R_{2I}{}^{0} = \varnothing \qquad R_{22}{}^{0} = \varepsilon + \mathbf{0} + \mathbf{1}$$

$$R_{ij}{}^{k} = R_{ik}{}^{k-1} (R_{kk}{}^{k-1})^{*} R_{kj}{}^{k-1} + R_{ij}{}^{k-1}$$

$$k = 1 \qquad R_{ij}{}^{1} = R_{i1}{}^{0} (R_{I1}{}^{0})^{*} R_{Ij}{}^{0} + R_{ij}{}^{0}.$$

$$R_{II}{}^{1} = R_{II}{}^{0} (R_{I1}{}^{0})^{*} R_{I1}{}^{0} + R_{I1}{}^{0} = (\varepsilon + \mathbf{1})(\varepsilon + \mathbf{1})^{*}(\varepsilon + \mathbf{1}) + (\varepsilon + \mathbf{1})$$

$$= (\varepsilon + \mathbf{1})\mathbf{1}^{*}(\varepsilon + \mathbf{1}) + (\varepsilon + \mathbf{1}) = \mathbf{1}^{*} + (\varepsilon + \mathbf{1}) = \mathbf{1}^{*}.$$

$$R_{I2}{}^{I} = R_{I1}{}^{0} (R_{I1}{}^{0})^{*} R_{I2}{}^{0} + R_{I2}{}^{0} = (\varepsilon + \mathbf{1})(\varepsilon + \mathbf{1})^{*}\mathbf{0} + \mathbf{0} = \mathbf{1}^{*}\mathbf{0} + \mathbf{0} = \mathbf{1}^{*}\mathbf{0}.$$

$$R_{2I}{}^{I} = R_{2I}{}^{0} (R_{I1}{}^{0})^{*} R_{I1}{}^{0} + R_{2I}{}^{0} = \varnothing(\varepsilon + \mathbf{1})^{*}(\varepsilon + \mathbf{1}) + \varnothing = \varnothing.$$

$$R_{22}{}^{I} = R_{21}{}^{0} (R_{I1}{}^{0})^{*} R_{I2}{}^{0} + R_{22}{}^{0} = \varnothing(\varepsilon + \mathbf{1})^{*}\mathbf{0} + \varepsilon + \mathbf{0} + \mathbf{1} = \varepsilon + \mathbf{0} + \mathbf{1}.$$

$$k=2 R_{ij}^{2} = R_{i2}^{1} (R_{22}^{1})^{*} R_{2j}^{1} + R_{ij}^{1}.$$

$$R_{11}^{2} = R_{12}^{1} (R_{22}^{1})^{*} R_{21}^{1} + R_{11}^{1} = \mathbf{1}^{*} \mathbf{0} (\varepsilon + \mathbf{0} + \mathbf{1})^{*} \varnothing + \mathbf{1}^{*} = \mathbf{1}^{*}.$$

$$R_{12}^{2} = R_{12}^{1} (R_{22}^{1})^{*} R_{22}^{1} + R_{12}^{1}$$

$$= \mathbf{1}^{*} \mathbf{0} (\varepsilon + \mathbf{0} + \mathbf{1})^{*} (\varepsilon + \mathbf{0} + \mathbf{1}) + \mathbf{1}^{*} \mathbf{0} = \mathbf{1}^{*} \mathbf{0} (\mathbf{0} + \mathbf{1})^{*}.$$

$$R_{21}^{2} = R_{22}^{1} (R_{22}^{1})^{*} R_{21}^{1} + R_{21}^{1} = (\varepsilon + \mathbf{0} + \mathbf{1}) (\varepsilon + \mathbf{0} + \mathbf{1})^{*} \varnothing + \varnothing = \varnothing.$$

$$R_{22}^{2} = R_{22}^{1} (R_{22}^{1})^{*} R_{22}^{1} + R_{22}^{1}$$

$$= (\varepsilon + \mathbf{0} + \mathbf{1}) (\varepsilon + \mathbf{0} + \mathbf{1})^{*} (\varepsilon + \mathbf{0} + \mathbf{1}) + \varepsilon + \mathbf{0} + \mathbf{1} = (\mathbf{0} + \mathbf{1})^{*}.$$

$$R = R_{12}^2 = \mathbf{1}^* \mathbf{0} (\mathbf{0} + \mathbf{1})^*.$$

3.2.2 Converting DFA's to Regular Expressions by Eliminating States

Previous construction

 n^3 equations

 $O(4^n)$ symbols in the regular expression

Eliminating states

If we eliminate state s, all paths that went though s no longer exists. labels: symbols \rightarrow possibly **infinite** strings

 \rightarrow regular expression(closure)

simultaneous equations(연립방정식)
n-equations and n-variables
eliminating variables

Simultaneous equations for each state with regular expressions

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a FA and $\forall q \in Q$, R_q is a regular equation $1 \leq \forall i \leq n, R_{q_i} = r_{i1}R_{q_1} + r_{i2}R_{q_2} + ... + r_{in}R_{q_n} + s_i$. regular eq.

where $1 \leq \forall j \leq n, \exists m \geq 0, r_{ij} = \mathbf{x}_1 + \mathbf{x}_2 + ... + \mathbf{x}_m$,

for $1 \leq \forall k \leq m, q_j \in \delta(q_i, \mathbf{x}_k)$ where $\mathbf{x}_k \in \Sigma^*$ and $s_i = \varepsilon$, if $q_i \in F$, and $s_i = \emptyset$, if $q_i \notin F$.

Note r_{ij} 's and s_i 's are constant regular expressions and R_{q_i} 's are unknown variables.

Then n states (variables) and n equations.

We can solve the **linear** simultaneous equation

- 1. eliminate variables(states) by substitution(데임)
- 2. eliminate recursive variable by closure.

Let $q = \alpha q + \beta$ where α and β are **regular equation** with **variables**.

$$q \Rightarrow \beta \ or$$
 $q \Rightarrow \alpha + \beta \ or$
 $q \Rightarrow \alpha \alpha + \beta = \alpha^2 + \beta \ or$
...
 $q = \alpha^* \beta$.

strange solution

$$q \neq 1/(1-\alpha) \beta$$

$$= (1 + \alpha + \alpha^2 + ...) \beta$$

$$\neq \alpha^* \beta.$$

Example 3.6 Figure 3.12(pp 101)

$$A = (\mathbf{0} + \mathbf{1})A + \mathbf{1}B$$

 $B = (\mathbf{0} + \mathbf{1})C$
 $C = (\mathbf{0} + \mathbf{1})D + \varepsilon$
 $D = \varepsilon$

$$C = (\mathbf{0} + \mathbf{1})\varepsilon + \varepsilon = \mathbf{0} + \mathbf{1} + \varepsilon$$

$$B = (\mathbf{0} + \mathbf{1})(\mathbf{0} + \mathbf{1} + \varepsilon) = (\mathbf{0} + \mathbf{1})^2 + (\mathbf{0} + \mathbf{1})$$

$$A = (\mathbf{0} + \mathbf{1})A + \mathbf{1}((\mathbf{0} + \mathbf{1})^2 + (\mathbf{0} + \mathbf{1}))$$

$$= (\mathbf{0} + \mathbf{1})^*\mathbf{1}(\mathbf{0} + \mathbf{1})^2 + (\mathbf{0} + \mathbf{1})^*\mathbf{1}(\mathbf{0} + \mathbf{1}).$$

Example 3.5 revisited(p. 95)

$$A = \mathbf{1}A + \mathbf{0}B$$
 $A = \mathbf{1}A + \mathbf{0}(\mathbf{0} + \mathbf{1})^* = \mathbf{1}^*\mathbf{0}(\mathbf{0} + \mathbf{1})^*.$ $B = (\mathbf{0} + \mathbf{1})B + \varepsilon$ $B = (\mathbf{0} + \mathbf{1})^*\varepsilon = (\mathbf{0} + \mathbf{1})^*.$

DFA in Figure 2.14 (pp 63) revisited

$$A = 1A + 0B \qquad A = 1A + 0(0 + 10)^{*}(11A + 1)$$

$$= (1 + 0(0 + 10)^{*}11)A + 0(0 + 10)^{*}1$$

$$= (1 + 0(0 + 10)^{*}11)^{*}0(0 + 10)^{*}1$$

$$B = 0B + 1C \qquad B = 0B + 11A + 10B + 1 = (0 + 10)B + 11A + 1$$

$$= (0 + 10)^{*}(11A + 1)$$

$$C = \mathbf{1}A + \mathbf{0}B + \varepsilon$$

NFA Figure 2.9(pp 56)

$$C = \varepsilon \qquad B = \mathbf{1}C = \mathbf{1}\varepsilon = \mathbf{1}$$

$$A = (\mathbf{0} + \mathbf{1})A + \mathbf{0}B = (\mathbf{0} + \mathbf{1})A + \mathbf{0}\mathbf{1} = (\mathbf{0} + \mathbf{1})^*\mathbf{0}\mathbf{1}$$

$$\therefore (\mathbf{1} + \mathbf{0}(\mathbf{0} + \mathbf{1}\mathbf{0})^*\mathbf{1}\mathbf{1})^*\mathbf{0}(\mathbf{0} + \mathbf{1}\mathbf{0})^*\mathbf{1} = (\mathbf{0} + \mathbf{1})^*\mathbf{0}\mathbf{1}$$

DFA in Figure 2.14 (pp 63) revisited

$$C = \underline{\mathbf{0}}B + \underline{\mathbf{1}}A + \varepsilon = A + \varepsilon \qquad B = \mathbf{0}B + \mathbf{1}C = \underline{\mathbf{0}}B + \underline{\mathbf{1}}A + \mathbf{1}\varepsilon = A + \mathbf{1}$$
$$A = \underline{\mathbf{0}}B + \underline{\mathbf{1}}A = \mathbf{1}A + \mathbf{0}A + \mathbf{0}\mathbf{1} = (\mathbf{0} + \mathbf{1})A + \mathbf{0}\mathbf{1} = (\mathbf{0} + \mathbf{1})^*\mathbf{0}\mathbf{1}$$

3.2.3 Converting Regular Expressions to Automata

Theorem 3.7 Every language **defined** by a **regular expression** is also **defined** by a **finite automaton**.

Proof Suppose L = L(R) for some regular expression R.

We show that L = L(E) for some ε -NFA E.

basis:

induction:

Example 3.8 and **Fig. 3.18** ε -NFA for RE $(0+1)^*1(0+1)$ in p. 106.

3.4 Algebraic Laws for Regular Expressions

Let R, S, T be regular expressions over Σ .

$$R + S = S + R$$
 union is commutative $(R + S) + T = R + (S + T)$ union is associative $RS \neq SR$ concatenation is now $(RS)T = R(ST)$

$$\varnothing + R = R + \varnothing = R$$

 $\varepsilon R = R\varepsilon = R$
 $\varnothing R = R\varnothing = \varnothing$

$$R(S + T) = RS + RT$$
$$(S + T)R = SR + TR$$

union is commutative concatenation is non-commutative concatenation is associative

> \emptyset is the **identity** for **union** ε is the **identity** for **concatenation** ∅ is the annihilator for concatenation

concatenation distributes over union

$$R + R = R$$
$$(R^*)^* = R^*$$

Union is **idempotent**Closure is **idempotent**

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta^* &= \epsilon & \epsilon^* &= \epsilon \\ R^+ &= RR^* &= R^*R. \end{aligned} & but \ R^+ &= R^* - \{\epsilon\}, \ if \ \epsilon \in R. \end{aligned}$$

$$\Sigma^* = \Sigma^+ + \varepsilon$$
 and $\Sigma^+ = \Sigma^* - \{\varepsilon\}$ (since $\varepsilon \notin \Sigma$).

Theorem 3.A Any finite language is regular.

Proof Any **finite** language can be denoted by (finite) **regular expression**.

union and concatenation.

no closure finite

Following statements are logically equivalent

- 1. L is regular.
- 2. L = L(D) for some DFA D with total function δ .
- 3. L = L(P) for some DFA P with partial function δ .
- 4. L = L(N) for some NFA N.
- 5. L = L(E) for some ε -NFA E.
- 6. L = L(X) for some XFA X.
- 7. L = L(R) for some RE R.

Following statements are logically equivalent

- 1. L is regular.
- 2. L = L(A) for some **finite automaton** A.
- 3. L = L(R) for some regular expression R.
- 4. L = L(G) for some regular grammar G. (TBD in Chap. 5)

Chomsky's type 3 Languages = Regular Languages = Finite Automata = Regular Expressions = Regular Grammars(Chap. 5)

