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E + F is
 of L(E) and L(F),

EF is
nation of L(E) and L(F),
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Chap. 3 Regular Expressions a
3.1.2 Regular Expressions over some alphabet 
Basis:

1. The constant  is a regular expression,
denoting the languages {}, i.e., L() =

2. The constant  is a regular expression,
denoting the languages , i.e., L() =

3. If a  , then a is a regular expression,
denoting the languages {a}, i.e., L(a) =

Induction:
1. If E and F are regular expressions, then 

a regular expression, denoting union
i.e., L(E + F) = L(E)  L(F).

2. If E and F are regular expressions, then 
a regular expression, denoting concate
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regular expression,
 (L(E))*.

 regular expression,

ors

 S, if L(R) = L(S).
9/21/16 Kwang-Moo Choe

i.e., L(EF) = L(E)L(F).
3. If E is a regular expression, then E* is a 

 denoting closure of L(E), i.e., L(E*) =
4. If E is a regular expression, then (E) is a

 denoting L(E), i.e., L((E)) = L(E).
Example 3.2 in p.89
3.1.3 Precedence of Regular Expression Operat

0. parenthesis
1. closure(*)
2. concatenation() or justaxaposed.
3. union(+)

Example 3.3 in p.91

Equivalence of regular expresssions
Let R, S be regular expressions. We say R =
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then there is a regular

for some n.

|-1, m(i, m:w)  k}
D from state i to state j
igher than k.

k n by induction on k.
9/21/16 Kwang-Moo Choe

3.2 Finite Automata and Regular Expressions
3.2.1 From DFA’s to Regular Expressions
Theorem 3.4 If L = L(D) for some DFA D, 
expressions R such that L = L(R).
Proof Let us suppose D’s states are {1, 2, …, n} 
Let us Rij

k be a regular expression such that

L(Rij
k) = {w  *| |w|(i, w) = j, 1  m  |w

The RE Rij
k denotes the set of strings that take fa 

without going through any state numbered h
When k=n, no restriction.

We can construct Rij
k 1 i n, 1 j n, and 0 

basis: k = 0, 1  i  n, 1  j  n.
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 k  n, (i, ak) = j, 
 k  n, (i, ak) = j,

1’s are known(I.H.).

j

9/21/16 Kwang-Moo Choe

Rij
0 = a1 + a2 + … + an if i  j, and 1 

= a1 + a2 + … + an +  if i = j and 1 
=  otherwise.

induction: Assume 1  i  n, 1  j  n, all Rij
k-

Rij
k = Rik

k-1 (Rkk
k-1)* Rkj

k-1 + Rij
k-1.

i

k

Rij
k-1

Rij
k

Rik
k-1

(Rkk
k-1)*

Rkj
k-1

k-1
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al states.
 L.

R22
0 =  + 0 + 1

 + 1) + ( + 1 )

= 1*.
0 + 0 = 1*0 + 0 =  1*0.

) + = .

 + 0 + 1 =  + 0 + 1.
9/21/16 Kwang-Moo Choe

Let s be the start state, and F = {f1, …, fg} be fin
R = Rsf1

n + Rsf2
n + … + Rsfg

n such that L(R) =

Example 3.5(p. 95-7) Figure 3.4
R11

0 =  + 1 R12
0 = 0 R21

0 =  

Rij
k = Rik

k-1 (Rkk
k-1)* Rkj

k-1 + Rij
k-1

k=1 Rij
1 = Ri1

0 (R11
0)* R1j

0 + Rij
0.

R11
1 = R11

0 (R11
0)* R11

0 + R11
0 = ( + 1)( + 1)*(

= ( + 1)1*( + 1) + ( + 1) = 1* + ( + 1) 
R12

1 = R11
0 (R11

0)* R12
0 + R12

0 =  ( + 1)( + 1)*

R21
1 = R21

0 (R11
0)* R11

0 + R21
0 = ( + 1)*( + 1

R22
1 = R21

0 (R11
0)* R12

0 + R22
0 =  ( + 1)*0 + 
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 + 1* = 1*.

 + 1)*.
 0 + 1)* +  = .

0 + 1 = (0 + 1)*.
9/21/16 Kwang-Moo Choe

k=2 Rij
2 = Ri2

1 (R22
1)* R2j

1 + Rij
1.

R11
2 = R12

1 (R22
1)* R21

1 + R11
1 = 1*0( + 0 + 1)*

R12
2 = R12

1 (R22
1)* R22

1 + R12
1 

= 1*0( + 0 + 1)*( + 0 + 1) + 1*0 = 1*0(0
R21

2 = R22
1 (R22

1)* R21
1 + R21

1 = ( + 0 + 1)( +

R22
2 = R22

1 (R22
1)* R22

1 + R22
1 

= ( + 0 + 1)( + 0 + 1)*( + 0 + 1) +  + 

R = R12
2 = 1*0(0 + 1)*.
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s by Eliminating States

ough s no longer exists.
9/21/16 Kwang-Moo Choe

3.2.2 Converting DFA’s to Regular Expression
Previous construction

n3 equations
O(4n) symbols in the regular expression

Eliminating states
If we eliminate state s, all paths that went th
labels: symbols  possibly infinite strings

 regular expression(closure)
simultaneous equations(연립방정식 )

n-equations and n-variables
eliminating variables
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lar expressions
is a  regular equation

n
 + si. regular eq.

 + … + xm, 

k) where xk  * and

i  F.

ns
9/21/16 Kwang-Moo Choe

Simultaneous equations for each state with regu
Let A = (Q, , , q0, F) be a FA and q  Q, Rq 

1  i  n, Rqi
 = ri1Rq1

 + ri2Rq2
 + … + rinRq

where 1  j  n, m  0, rij = x1 + x2
for 1  k  m, qj  (qi, x

si = , if qi  F, and si = , if q

Note rij’s and si’s are constant regular expressio
and Rqi

’s are unknown variables.

Then n states(variables) and n equations.
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(대입 )

tion with variables.
9/21/16 Kwang-Moo Choe

We can solve the linear simultaneous equation
1. eliminate variables(states) by substitution
2. eliminate recursive variable by closure.

Let q = q +  where  and  are regular equa
q   or
q   + or
q   +  = 2 + or

q = * .

strange solution
q  1/(1-) 
   = (1 +  + 2 + …) 
    * .
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 1*0(0 +1)*.
1)*.
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Example 3.6 Figure 3.12(pp 101)
A = (0 +1)A + 1B
B = (0 +1)C
C = (0 +1)D + 
D = 

C = (0 +1) +  = 0 +1 + 
B = (0 +1)(0 +1 + ) = (0 +1)2 + (0 +1)
A = (0 +1)A + 1((0 +1)2 + (0 +1))
    = (0 +1)*1(0 +1)2 + (0 +1)*1(0 +1).

Example 3.5 revisited(p. 95)
A = 1A + 0B A = 1A + 0(0 +1)* =
B = (0 +1)B +  B = (0 +1)* = (0 +
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 + 1)
 0(0 + 10)*1 
 + 10)*1
= (0 + 10)B + 11A + 1

)*01
0 +1)*01

 0B + 1A + 1 = A + 1
01 = (0 +1)*01
9/21/16 Kwang-Moo Choe

DFA in Figure 2.14 (pp 63) revisited
A = 1A + 0B A = 1A + 0(0 + 10)*(11A 

  =  (1+ 0(0 + 10)*11)A +
  = (1+ 0(0 + 10)*11)*0(0

B = 0B + 1C B = 0B + 11A + 10B + 1 
   = (0 + 10)*(11A + 1)

C = 1A + 0B + 
NFA Figure 2.9(pp 56)

C =  B = 1C = 1 = 1
A = (0 + 1)A + 0B = (0 + 1)A + 01 = (0 +1

 (1+ 0(0 + 10)*11)*0(0 + 10)*1 = (
DFA in Figure 2.14 (pp 63) revisited

C = 0B + 1A +  = A +  B = 0B + 1C =
A = 0B + 1A = 1A + 0A + 01 = (0 +1)A + 
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ata
ular expression is also

sion R.

a
3. a
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3.2.3 Converting Regular Expressions to Autom
Theorem 3.7 Every language defined by a reg
defined by a finite automaton.
Proof Suppose L = L(R) for some regular expres

We show that L = L(E) for some -NFA E.
basis:


1.  2. 
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1(0+1) in p. 106.





9/21/16 Kwang-Moo Choe

induction:

Example 3.8 and Fig. 3.18 -NFA for RE (0+1)*

R

S





R S


R







1. R + S

2. R S

3. R*
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utative
iative
 is non-commutative
 is associative

ty for union
y for concatenation
ilator for concatenation

 distributes over union
9/21/16 Kwang-Moo Choe

3.4 Algebraic Laws for Regular Expressions
Let R, S, T be regular expressions over .

R + S = S + R union is comm
(R + S) + T = R + (S + T) union is assoc
RS  SR concatenation
(RS)T = R(ST) concatenation

 + R = R +  = R  is the identi
R = R = R  is the identit
R = R =   is the annih

R(S + T) = RS + RT concatenation
(S + T)R = SR + TR
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potent
potent

 = .

f   R

(since   ).

ite) regular expression.
9/21/16 Kwang-Moo Choe

R + R = R Union is idem
(R*)* = R* Closure is idem

* =   * =  but + =  +

R+ = RR* = R*R.
R* = R+ +  but R+  R*   {}, i

* = + +  and + = *    {} 

Theorem 3.A Any finite language is regular.
Proof Any finite language can be denoted by (fin

union and concatenation.
no closure finite
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tion .
ction .

TBD in Chap. 5)
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Following statements are logically equivalent
1. L is regular.
2. L = L(D) for some DFA D with total func
3. L = L(P) for some DFA P with partial fun
4. L = L(N) for some NFA N.
5. L = L(E) for some -NFA E.
6. L = L(X) for some XFA X.
7. L = L(R) for some RE R.

Following statements are logically equivalent
1. L is regular.
2. L = L(A) for some finite automaton A.
3. L = L(R) for some regular expression R.
4. L = L(G) for some regular grammar G. (
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ages = Finite Automata
hap. 5)

guages 2
*

regular
L

mars

egular
G
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Chomsky’s type 3 Languages = Regular Langu
= Regular Expressions = Regular Grammars(C

Automata

DFA

Expressions

XFA=FA L

L

regular

NFA
-NFA

R

D

X

Lan

Gram

r
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