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Chap. 5 Context-Free Gr
5.1 Context-Free Grammars
5.1.1 An Informal Example
madamimadam “Madam, I’m Adam”
A string w is palindrome, if and only if w = wR.
Palindromes over {0, 1}

basis: , 0, and 1 are palindrome
induction: If w is a palindrome, so ar

No other string is palindro
Context-Free Grammar

1. P  
2. P  0
3. P  1
4. P  0P0
5. P  1P1
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s, syntactic categories),
re N   = ,

, written A  ,
 of production
y) of production
start(axiom) symbol.

P  0P0, P  1P1}, P)
1, …, A   n  P.

1}, P)
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5.1.2 Definition of Context-Free Grammars
A guadruple G = (N, , P, S) is a context-free gr

1. N is a finite set of nonterminals(variable
2.  is a finite set of terminal symbols, whe
3. P is a finite set of productions(rules),

where each production is a pair (A, )
A  N left part(head)
  (N  )*, right part(bod

4. S  N is a distinguished variable, called 

Example 5.2
Gpal = ({P}, {0, 1}, {P  , P  0, P  1, 

We write A  1 | … | n  P instead of A  
Example 5.2’

Gpal = ({P}, {0, 1}, {P   | 0 | 1 | 0P0 | 1P
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Example 5.3 regular expressions over {a, b, 0, 1
E  E + E | EE | E* | (E) | B inductio
B   |  | a | b | 0 | 1 basis

Note that  is not the empty string but a symbol 
N = {E, B}
 = {, , a, b, 0, 1, +, *, (, )}

Example 5.3 regular expression revisited
E  E + E | EE | E* | (E) |  |  | a | b | 0 |
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e a production.
, written
erstood, B  .

 (N)*.
ary relation from .

basis
n-1 . recursion
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5.1.3 Derivation Using a Grammar
Let ,   (N)* and B  N, and B   P b
We say string B directly derives  in CFG G

B G , we may omit G when it is und

  (N)*  (N)* a binary relation on
    is an induced bin

Note that  is finite but  is infinite.
 is an extension of .

Recursive definition of i.
1.  0 ,   (N)*.
2. For n  1, if  n , and   , then  

Definition of *.
* = iN0

 i. reflexive trans
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w  *.
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uch that L = L(G).
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We say  derives , if  *  for some ,   (N
We say  is a sentential form of G, if S *  for
We say w is a sentence of G, if S * w for some 

The language of G, denoted L(G), is L(G) = {w 

A language L is context-free, if there is a cfg G s

Notational conventions for CFG
a, b, c, …   terminal symbols
A, B, C, …  N variable symbols
X, Y, Z, …  N   general symbols
x, y, z, …  * terminal strings
, , , …  (N)* general strings
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 variable
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Derivation of CFG is nondeterministic
1. Which variable to be replaced
2. Which right hand side of the rule to be re

leftmost derivation, lm, to replace leftmost var

S lm
* xB lm x lm

* xy lm
* xyz

where x, y, z  *,   (N)*, A  

rightmost derivation, rm, to replace rightmost

S rm
* Bz rm z rm

* yz rm
*xyz 

where  x, y, z  *,   (N)*, A 

Note that lm, rm   .
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G are trees
le A  N

a   or .
ildren are labelled

o right

f parse tree.

s a node and (A  N)
se tree with root S where
A, Xi)| 1  i  n}.
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5.2 Parse Trees
Let G = (N, , P, S) be a cfg. The parse tree for 

1. Each interior node is labelled by a variab
2. Each leaf node is labelled by a terminal 
3. If an interior node is labelled A and its ch

X1, X2, …, Xn from left to right
A  X1X2…Xn  P.

yield of a tree
concatenation of leaves of a tree from left t

Recursive definition(Top Down construction) o
Basis ({S}, , S) is a parse tree.
Recursion Let (V, E, S) be parse trees. If A  V i
AX1X2…Xn  P. Then (V’, E’, S) is a new par

V’ =  V  {X1, X2, … , Xn} and E’ =  E  {(
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se tree (V’, E’, S).
ode.
 node(a root of subtree).

 of parse tree.
rse trees.

  n: Xi  N   and
Xn) be new parse trees.

2  …  Vn and
  En.

P
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Two futures of the new leaf nodes Xi’s in the par
i) Xi    the node Xi remains as a leaf n
ii) Xi  N  the node Xi will be an interior

Recursive definition2(Bottum Up construction)
Basis X N  : ({X}, , X) can be(?) pa
Recursion Let A  X1X2…Xn   P where 1 i

(V1, E1, X1), (V2, E2, X2), …, (Vn, En, 
Then (V, E, A) is a new parse tree where

V = {A}  i{1, 2, …, n} Vi = {A}  V1  V
E = i{1, 2, …, n} {(A, Xi)}  E1  E2  …

See details for right parser in the supplement 2 T
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Following four statements are equivalent for som
(1) A * x,
(2) A lm

* x,

(3) A rm
* x,

(4) There is a parse tree with root A and yie
Proof (2)  (1), (3)  (1) are trivial (lm, rm
(1)  (4): Thm. 5.12
(4)  (2), (4)  (3): Thm 5.14 and 5.16
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e with root A and yield x

.8(p187).
ikixi, and x=x1x2…xn
e tree with leaf xi  .
and yield xi.(IH)

k3 … kn x1x2…xn. 
, then

 p188)
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Theorem 5.12 If A * x, then there is a parse tre
Proof Induction on number of derivations
Basis A 1 x, A  x  P.  Parse tree in Fig. 5
Induction Assume AX1X2…Xn  P, 1in: X
1) If Xi  , Xi = xi, Xi ki (0; =) xi.     pars
2) If Xi  N, Xi ki xi.  parse tree with root Xi 
 A  X1X2…Xn k1 x1X2…Xn k2 x1x2…Xn 
 If A m x1x2…xn = x(m1) where nki = m-1

parse tree with root A and yield x.(Fig. 5.9;
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 and yield x, A lm
* x.

x  P. A lm x.
ight m, and sons X1, X2,
Fig. 5.9) 

han m)

 lm
* x1x2…xn.

 and yield x, A rm
* x.

ftmost derivation)

n rm
* x1x2…xn.
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Theorem 5.14 If there is a parse tree with root A
Proof Induction on height of a tree
Basis Parse tree with height 1, in Fig. 5.8. A  
Induction Consider a parse tree with root A, he
…, Xn from left to right, and yield x = x1x2…xn.(

1) If Xi  , Xi = xi. Xi lm
0 xi.

2) If Xi  N, Xi lm
+ xi.(IH; with height is less t

A lm X1X2…Xn lm
* x1X2…Xn lm

* x1x2…Xn

Theorem 5.16 If there is a parse tree with root A
Proof Induction on height of a tree(similar to le
A rm X1X2…Xn rm

* X1X2…xn rm
* X1x2…x



CS322 5. Context-Free Grammars and Languages

12

 + a * E lm a + a * a.

lm a * E lm a + a * a.
(G)  
ructure),
rivation sequences)

P.
 string)

P, ,,  (N)*.
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5.4 Ambiguity in Grammars and Languages
G1: E  E + E | E * E | a | (E)
   E lm E + E lm a + E lm a + E * E lm a
   E lm E * E lm E + E * E lm a + E * E 
A grammar G is said to be ambiguous, if x  L

x has more than one parse trees(syntactic st
 (x has more that one leftmost(rightmost) de

otherwise, unambiguous.

Derivation revisited
We may write A r , if r = A    

Recursive extension of derivation with rules(rule
  , for   (N)*, and
 r , if   ,  r  for   P*, r  
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Parser of a grammar G,
x  *, if x  L(G) syntactic structure(par

     otherwise say NO.
Is the parser for G is deterministic?

Not always!

It is undecidable whether G is ambiguous or no

If G is unambiguous, the parser for G may be de
If G is ambiguous, the parser for G is nondeterm
If the parser for G is deterministic, G is unambi

parser structur
regular deterministic linear
context-free nondeterministic hierarch
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Deterministic parsing of context-free languages
If S lm

 x for x  *,   P* is called the left p

If S rm
 x for x *, R  P* is called the righ

parse tree  left parse  right parse  sy

left(right) parser: left(right) parse

LL(k): Left-to-right scan in Leftmost derivation 
LR(k): Left-to-right scan in Rightmost derivation

Left parser same direction in scan and deri
normal order, top-down parsing(LL p

Right parser different direction in scan and d
reversed order, bottom-up parsing(LR
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e of a grammar
|G1| = 4+4+2+4 = 14.
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Removing ambiguity in the grammar
Assume that precedence of * is higher than that 

+ and * are left associative.

G2: E  E + T | T * F | a | ( E )
       T               T * F | a | ( E )
       F                           a | ( E )
G3: E  E + T | T 
       T  T * F | F
       F  a | ( E )

|G| = AP |A| + || = AP || + 1 Siz
|G2| = 14+10+6 = 30, |G3| = 6+6+6 = 18, 

A  B is called unit production, if A, B  N.
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A context free language L is said to be inherent
if every cfg G  L = L(G) is ambiguous.

L = {anbncmdm| n, m1}  {anbmcmdn| n, m1} i
Consider G: S  AB | C

A  aAb | ab
B  cBd | cd
C  aCd | aDd
D  bDc | bc

and the sentence anbncndn.
S lm AB lm aAbB lm

* an-1Abn-1B lm anbn

lm anbncBd lm
* anbncn-1Bdn-1 lm anbn

S lm C lm aCd lm
* an-1Cdn-1 lm anDdn 

lm anbDcdn lm
* anbn-1Dcn-1dn lm anb
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