
CS322 5. Context-Free Grammars and Languages

1

ammars

s.
e 0w0 and 1w1.
me.
10/28/14 Kwang-Moo Choe

Chap. 5 Context-Free Gr
5.1 Context-Free Grammars
5.1.1 An Informal Example
madamimadam “Madam, I’m Adam”
A string w is palindrome, if and only if w = wR.
Palindromes over {0, 1}

basis: , 0, and 1 are palindrome
induction: If w is a palindrome, so ar

No other string is palindro
Context-Free Grammar

1. P  
2. P  0
3. P  1
4. P  0P0
5. P  1P1

CS322 5. Context-Free Grammars and Languages

2

ammar, if
s, syntactic categories),
re N   = ,

, written A  ,
 of production
y) of production
start(axiom) symbol.

P  0P0, P  1P1}, P)
1, …, A  n  P.

1}, P)
10/28/14 Kwang-Moo Choe

5.1.2 Definition of Context-Free Grammars
A guadruple G = (N, , P, S) is a context-free gr

1. N is a finite set of nonterminals(variable
2.  is a finite set of terminal symbols, whe
3. P is a finite set of productions(rules),

where each production is a pair (A, )
A  N left part(head)
  (N  )*, right part(bod

4. S  N is a distinguished variable, called

Example 5.2
Gpal = ({P}, {0, 1}, {P  , P  0, P  1,

We write A  1 | … | n  P instead of A  
Example 5.2’

Gpal = ({P}, {0, 1}, {P   | 0 | 1 | 0P0 | 1P

CS322 5. Context-Free Grammars and Languages

3

}
n

for regular expression.

 1
10/28/14 Kwang-Moo Choe

Example 5.3 regular expressions over {a, b, 0, 1
E  E + E | EE | E* | (E) | B inductio
B   |  | a | b | 0 | 1 basis

Note that  is not the empty string but a symbol
N = {E, B}
 = {, , a, b, 0, 1, +, *, (,)}

Example 5.3 regular expression revisited
E  E + E | EE | E* | (E) |  |  | a | b | 0 |

CS322 5. Context-Free Grammars and Languages

4

e a production.
, written
erstood, B  .

 (N)*.
ary relation from .

basis
n-1 . recursion

itive closure of .
10/28/14 Kwang-Moo Choe

5.1.3 Derivation Using a Grammar
Let ,   (N)* and B  N, and B   P b
We say string B directly derives  in CFG G

B G , we may omit G when it is und

  (N)*  (N)* a binary relation on
    is an induced bin

Note that  is finite but  is infinite.
 is an extension of .

Recursive definition of i.
1.  0 ,   (N)*.
2. For n  1, if  n , and   , then  

Definition of *.
* = iN0

 i. reflexive trans

CS322 5. Context-Free Grammars and Languages

5

)*.
 some   (N)*.
w  *.

 *| S * w}.

uch that L = L(G).
10/28/14 Kwang-Moo Choe

We say  derives , if  *  for some ,   (N
We say  is a sentential form of G, if S *  for
We say w is a sentence of G, if S * w for some

The language of G, denoted L(G), is L(G) = {w 

A language L is context-free, if there is a cfg G s

Notational conventions for CFG
a, b, c, …   terminal symbols
A, B, C, …  N variable symbols
X, Y, Z, …  N   general symbols
x, y, z, …  * terminal strings
, , , …  (N)* general strings

CS322 5. Context-Free Grammars and Languages

6

placed

iable

  P.

 variable

   P.
10/28/14 Kwang-Moo Choe

Derivation of CFG is nondeterministic
1. Which variable to be replaced
2. Which right hand side of the rule to be re

leftmost derivation, lm, to replace leftmost var

S lm
* xB lm x lm

* xy lm
* xyz

where x, y, z  *,   (N)*, A  

rightmost derivation, rm, to replace rightmost

S rm
* Bz rm z rm

* yz rm
*xyz

where x, y, z  *,   (N)*, A 

Note that lm, rm  .

CS322 5. Context-Free Grammars and Languages

7

G are trees
le A  N

a   or .
ildren are labelled

o right

f parse tree.

s a node and (A  N)
se tree with root S where
A, Xi)| 1  i  n}.
10/28/14 Kwang-Moo Choe

5.2 Parse Trees
Let G = (N, , P, S) be a cfg. The parse tree for

1. Each interior node is labelled by a variab
2. Each leaf node is labelled by a terminal
3. If an interior node is labelled A and its ch

X1, X2, …, Xn from left to right
A  X1X2…Xn  P.

yield of a tree
concatenation of leaves of a tree from left t

Recursive definition(Top Down construction) o
Basis ({S}, , S) is a parse tree.
Recursion Let (V, E, S) be parse trees. If A  V i
AX1X2…Xn  P. Then (V’, E’, S) is a new par

V’ = V  {X1, X2, … , Xn} and E’ = E  {(

CS322 5. Context-Free Grammars and Languages

8

se tree (V’, E’, S).
ode.
 node(a root of subtree).

 of parse tree.
rse trees.

  n: Xi  N   and
Xn) be new parse trees.

2  …  Vn and
  En.

P

10/28/14 Kwang-Moo Choe

Two futures of the new leaf nodes Xi’s in the par
i) Xi    the node Xi remains as a leaf n
ii) Xi  N  the node Xi will be an interior

Recursive definition2(Bottum Up construction)
Basis X N  : ({X}, , X) can be(?) pa
Recursion Let A  X1X2…Xn  P where 1 i

(V1, E1, X1), (V2, E2, X2), …, (Vn, En,
Then (V, E, A) is a new parse tree where

V = {A}  i{1, 2, …, n} Vi = {A}  V1  V
E = i{1, 2, …, n} {(A, Xi)}  E1  E2  …

See details for right parser in the supplement 2 T

CS322 5. Context-Free Grammars and Languages

9

e terminal string x*.

ld x.
  ).
10/28/14 Kwang-Moo Choe

Following four statements are equivalent for som
(1) A * x,
(2) A lm

* x,

(3) A rm
* x,

(4) There is a parse tree with root A and yie
Proof (2)  (1), (3)  (1) are trivial (lm, rm
(1)  (4): Thm. 5.12
(4)  (2), (4)  (3): Thm 5.14 and 5.16

CS322 5. Context-Free Grammars and Languages

10

e with root A and yield x

.8(p187).
ikixi, and x=x1x2…xn
e tree with leaf xi  .
and yield xi.(IH)

k3 … kn x1x2…xn.
, then

 p188)
10/28/14 Kwang-Moo Choe

Theorem 5.12 If A * x, then there is a parse tre
Proof Induction on number of derivations
Basis A 1 x, A  x  P.  Parse tree in Fig. 5
Induction Assume AX1X2…Xn  P, 1in: X
1) If Xi  , Xi = xi, Xi ki (0; =) xi.  pars
2) If Xi  N, Xi ki xi.  parse tree with root Xi
 A  X1X2…Xn k1 x1X2…Xn k2 x1x2…Xn 
 If A m x1x2…xn = x(m1) where nki = m-1

parse tree with root A and yield x.(Fig. 5.9;

CS322 5. Context-Free Grammars and Languages

11

 and yield x, A lm
* x.

x  P. A lm x.
ight m, and sons X1, X2,
Fig. 5.9)

han m)

 lm
* x1x2…xn.

 and yield x, A rm
* x.

ftmost derivation)

n rm
* x1x2…xn.
10/28/14 Kwang-Moo Choe

Theorem 5.14 If there is a parse tree with root A
Proof Induction on height of a tree
Basis Parse tree with height 1, in Fig. 5.8. A 
Induction Consider a parse tree with root A, he
…, Xn from left to right, and yield x = x1x2…xn.(

1) If Xi  , Xi = xi. Xi lm
0 xi.

2) If Xi  N, Xi lm
+ xi.(IH; with height is less t

A lm X1X2…Xn lm
* x1X2…Xn lm

* x1x2…Xn

Theorem 5.16 If there is a parse tree with root A
Proof Induction on height of a tree(similar to le
A rm X1X2…Xn rm

* X1X2…xn rm
* X1x2…x

CS322 5. Context-Free Grammars and Languages

12

 + a * E lm a + a * a.

lm a * E lm a + a * a.
(G) 
ructure),
rivation sequences)

P.
 string)

P, ,,  (N)*.
10/28/14 Kwang-Moo Choe

5.4 Ambiguity in Grammars and Languages
G1: E  E + E | E * E | a | (E)
 E lm E + E lm a + E lm a + E * E lm a
 E lm E * E lm E + E * E lm a + E * E 
A grammar G is said to be ambiguous, if x  L

x has more than one parse trees(syntactic st
 (x has more that one leftmost(rightmost) de

otherwise, unambiguous.

Derivation revisited
We may write A r , if r = A   

Recursive extension of derivation with rules(rule
  , for   (N)*, and
 r , if   ,  r  for   P*, r 

CS322 5. Context-Free Grammars and Languages

13

se tree),

t.

terministic or not.
inistic.

guous.

e

ical
10/28/14 Kwang-Moo Choe

Parser of a grammar G,
x  *, if x  L(G) syntactic structure(par

 otherwise say NO.
Is the parser for G is deterministic?

Not always!

It is undecidable whether G is ambiguous or no

If G is unambiguous, the parser for G may be de
If G is ambiguous, the parser for G is nondeterm
If the parser for G is deterministic, G is unambi

parser structur
regular deterministic linear
context-free nondeterministic hierarch

CS322 5. Context-Free Grammars and Languages

14

arse of the sentence x.

t parse of the sentence x.
ntactic structure

with k-lookahead symbols
 with k-lookahead symbol

vation
arsing)
erivation
, LALR, SLR parsing)
10/28/14 Kwang-Moo Choe

Deterministic parsing of context-free languages
If S lm

 x for x  *,   P* is called the left p

If S rm
 x for x *, R  P* is called the righ

parse tree  left parse  right parse  sy

left(right) parser: left(right) parse

LL(k): Left-to-right scan in Leftmost derivation
LR(k): Left-to-right scan in Rightmost derivation

Left parser same direction in scan and deri
normal order, top-down parsing(LL p

Right parser different direction in scan and d
reversed order, bottom-up parsing(LR

CS322 5. Context-Free Grammars and Languages

15

of +, and

e of a grammar
|G1| = 4+4+2+4 = 14.
10/28/14 Kwang-Moo Choe

Removing ambiguity in the grammar
Assume that precedence of * is higher than that

+ and * are left associative.

G2: E  E + T | T * F | a | (E)
 T  T * F | a | (E)
 F  a | (E)
G3: E  E + T | T
 T  T * F | F
 F  a | (E)

|G| = AP |A| + || = AP || + 1 Siz
|G2| = 14+10+6 = 30, |G3| = 6+6+6 = 18,

A  B is called unit production, if A, B  N.

CS322 5. Context-Free Grammars and Languages

16

ly ambiguous,

s inherently ambiguous.

B

cndn.

ncndn.
10/28/14 Kwang-Moo Choe

A context free language L is said to be inherent
if every cfg G  L = L(G) is ambiguous.

L = {anbncmdm| n, m1}  {anbmcmdn| n, m1} i
Consider G: S  AB | C

A  aAb | ab
B  cBd | cd
C  aCd | aDd
D  bDc | bc

and the sentence anbncndn.
S lm AB lm aAbB lm

* an-1Abn-1B lm anbn

lm anbncBd lm
* anbncn-1Bdn-1 lm anbn

S lm C lm aCd lm
* an-1Cdn-1 lm anDdn

lm anbDcdn lm
* anbn-1Dcn-1dn lm anb

	Chap. 5 Context-Free Grammars
	5.1 Context-Free Grammars
	5.1.1 An Informal Example
	madamimadam “Madam, I’m Adam”
	A string w is palindrome, if and only if w = wR.
	Palindromes over {0, 1}
	basis: e, 0, and 1 are palindromes.
	induction: If w is a palindrome, so are 0w0 and 1w1.
	No other string is palindrome.
	Context-Free Grammar
	1. P Æ e
	2. P Æ 0
	3. P Æ 1
	4. P Æ 0P0
	5. P Æ 1P1
	5.1.2 Definition of Context-Free Grammars
	A guadruple G = (N, S, P, S) is a context-free grammar, if
	1. N is a finite set of nonterminals(variables, syntactic categories),
	2. S is a finite set of terminal symbols, where N « S = Æ,
	3. P is a finite set of productions(rules),
	where each production is a pair (A, a), written A Æ a,
	A Œ N left part(head) of production
	a Œ (N » S)*, right part(body) of production
	4. S Œ N is a distinguished variable, called start(axiom) symbol.
	Example 5.2
	Gpal = ({P}, {0, 1}, {P Æ e, P Æ 0, P Æ 1, P Æ 0P0, P Æ 1P1}, P)
	We write A Æ a1 | … | an Œ P instead of A Æ a1, …, A Æ an Œ P.
	Example 5.2’
	Gpal = ({P}, {0, 1}, {P Æ e | 0 | 1 | 0P0 | 1P1}, P)
	Example 5.3 regular expressions over {a, b, 0, 1}
	E Æ E + E | EE | E* | (E) | B induction
	B Æ e | Æ | a | b | 0 | 1 basis
	Note that e is not the empty string but a symbol for regular expression.
	N = {E, B}
	S = {e, Æ, a, b, 0, 1, +, *, (,)}
	Example 5.3 regular expression revisited
	E Æ E + E | EE | E* | (E) | e | Æ | a | b | 0 | 1
	5.1.3 Derivation Using a Grammar
	Let a, g Œ (N»S)* and B Œ N, and B Æ b Œ P be a production.
	We say string aBg directly derives abg in CFG G, written
	aBg ﬁG abg, we may omit G when it is understood, aBg ﬁ abg.
	ﬁ Õ (N»S)* ¥ (N»S)* a binary relation on (N»S)*.
	Æ Õ ﬁ ﬁ is an induced binary relation from Æ.
	Note that Æ is finite but ﬁ is infinite.
	Æ is an extension of ﬁ.
	Recursive definition of ﬁi.
	1. a ﬁ0 a, "a Œ (N»S)*. basis
	2. For n ³ 1, if a ﬁn b, and b ﬁ g, then a ﬁn-1 g. recursion
	Definition of ﬁ*.
	ﬁ* = »iŒN0 ﬁi. reflexive transitive closure of ﬁ.
	We say a derives b, if a ﬁ* b for some a, b Œ (N»S)*.
	We say a is a sentential form of G, if S ﬁ* a for some a Œ (N»S)*.
	We say w is a sentence of G, if S ﬁ* w for some w Œ S*.
	The language of G, denoted L(G), is L(G) = {w Œ S*| S ﬁ* w}.
	A language L is context-free, if there is a cfg G such that L = L(G).
	Notational conventions for CFG
	a, b, c, … Œ S terminal symbols
	A, B, C, … Œ N variable symbols
	X, Y, Z, … Œ N » S general symbols
	x, y, z, … Œ S* terminal strings
	a, b, g, … Œ (N»S)* general strings
	Derivation of CFG is nondeterministic
	1. Which variable to be replaced
	2. Which right hand side of the rule to be replaced
	leftmost derivation, ﬁlm, to replace leftmost variable
	S ﬁlm* xBg ﬁlm xbg ﬁlm* xyg ﬁlm* xyz
	where x, y, z Œ S*, g Œ (N»S)*, A Æ b Œ P.
	rightmost derivation, ﬁrm, to replace rightmost variable
	S ﬁrm* aBz ﬁrm abz ﬁrm* ayz ﬁrm*xyz
	where x, y, z Œ S*, a Œ (N»S)*, A Æ b Œ P.
	Note that ﬁlm, ﬁrm Õ ﬁ.
	5.2 Parse Trees
	Let G = (N, S, P, S) be a cfg. The parse tree for G are trees
	1. Each interior node is labelled by a variable A Œ N
	2. Each leaf node is labelled by a terminal a Œ S or e.
	3. If an interior node is labelled A and its children are labelled
	X1, X2, …, Xn from left to right
	A Æ X1X2…Xn Œ P.
	yield of a tree
	concatenation of leaves of a tree from left to right
	Recursive definition(Top Down construction) of parse tree.
	Basis ({S}, Æ, S) is a parse tree.
	Recursion Let (V, E, S) be parse trees. If A Œ V is a node and (A Œ N)
	AÆX1X2…Xn Œ P. Then (V’, E’, S) is a new parse tree with root S where
	V’ = V » {X1, X2, … , Xn} and E’ = E » {(A, Xi)| 1 £ "i £ n}.
	Two futures of the new leaf nodes Xi’s in the parse tree (V’, E’, S).
	i) Xi Œ S Æ the node Xi remains as a leaf node.
	ii) Xi Œ N Æ the node Xi will be an interior node(a root of subtree).
	Recursive definition2(Bottum Up construction) of parse tree.
	Basis "X Œ N » S: ({X}, Æ, X) can be(?) parse trees.
	Recursion Let A Æ X1X2…Xn Œ P where 1£ "i £ n: Xi Œ N » S and
	(V1, E1, X1), (V2, E2, X2), …, (Vn, En, Xn) be new parse trees.
	Then (V, E, A) is a new parse tree where
	V = {A} » »iŒ{1, 2, …, n} Vi = {A} » V1 » V2 » … » Vn and
	E = »iŒ{1, 2, …, n} {(A, Xi)} » E1 » E2 » … » En.
	See details for right parser in the supplement 2 TP
	5.4 Ambiguity in Grammars and Languages
	G1: E Æ E + E | E * E | a | (E)
	E ﬁlm E + E ﬁlm a + E ﬁlm a + E * E ﬁlm a + a * E ﬁlm a + a * a.
	E ﬁlm E * E ﬁlm E + E * E ﬁlm a + E * E ﬁlm a * E ﬁlm a + a * a.
	A grammar G is said to be ambiguous, if $x Œ L(G) .'.
	x has more than one parse trees(syntactic structure),
	(x has more that one leftmost(rightmost) derivation sequences)
	otherwise, unambiguous.
	Derivation revisited
	We may write aAb ﬁr agb, if r = A Æ g Œ P.
	Recursive extension of derivation with rules(rule string)
	a ﬁe a, for a Œ (N»S)*, and
	a ﬁpr g, if a ﬁp b, b ﬁr g for p Œ P*, r Œ P, a,b,g Œ (N»S)*.
	Parser of a grammar G,
	"x Œ S*, if x Œ L(G) syntactic structure(parse tree),
	otherwise say NO.
	Is the parser for G is deterministic?
	Not always!
	It is undecidable whether G is ambiguous or not.
	If G is unambiguous, the parser for G may be deterministic or not.
	If G is ambiguous, the parser for G is nondeterministic.
	If the parser for G is deterministic, G is unambiguous.
	parser structure
	regular deterministic linear
	context-free nondeterministic hierarchical
	Deterministic parsing of context-free languages
	If S ﬁlmp x for x Œ S*, p Œ P* is called the left parse of the sentence x.
	If S ﬁrmp x for xŒ S*, pR Œ P* is called the right parse of the sentence x.
	parse tree ¤ left parse ¤ right parse ¤ syntactic structure
	left(right) parser: left(right) parse
	LL(k): Left-to-right scan in Leftmost derivation with k-lookahead symbols
	LR(k): Left-to-right scan in Rightmost derivation with k-lookahead symbol
	Left parser same direction in scan and derivation
	normal order, top-down parsing(LL parsing)
	Right parser different direction in scan and derivation
	reversed order, bottom-up parsing(LR, LALR, SLR parsing)
	Removing ambiguity in the grammar
	Assume that precedence of * is higher than that of +, and
	+ and * are left associative.
	G2: E Æ E + T | T * F | a | (E)
	T Æ T * F | a | (E)
	F Æ a | (E)
	G3: E Æ E + T | T
	T Æ T * F | F
	F Æ a | (E)
	|G| = SAÆaŒP |A| + |a| = SAÆaŒP |a| + 1 Size of a grammar
	|G2| = 14+10+6 = 30, |G3| = 6+6+6 = 18, |G1| = 4+4+2+4 = 14.
	A Æ B is called unit production, if A, B Œ N.
	A context free language L is said to be inherently ambiguous,
	if every cfg G .'. L = L(G) is ambiguous.
	L = {anbncmdm| n, m³1} » {anbmcmdn| n, m³1} is inherently ambiguous.
	Consider G: S Æ AB | C
	A Æ aAb | ab
	B Æ cBd | cd
	C Æ aCd | aDd
	D Æ bDc | bc
	and the sentence anbncndn.
	S ﬁlm AB ﬁlm aAbB ﬁlm* an-1Abn-1B ﬁlm anbnB
	ﬁlm anbncBd ﬁlm* anbncn-1Bdn-1 ﬁlm anbncndn.
	S ﬁlm C ﬁlm aCd ﬁlm* an-1Cdn-1 ﬁlm anDdn
	ﬁlm anbDcdn ﬁlm* anbn-1Dcn-1dn ﬁlm anbncndn.
	Following four statements are equivalent for some terminal string xŒS*.
	(1) A ﬁ* x,
	(2) A ﬁlm* x,
	(3) A ﬁrm* x,
	(4) There is a parse tree with root A and yield x.
	Proof (2) ﬁ (1), (3) ﬁ (1) are trivial (ﬁlm, ﬁrm Õ ﬁ).
	(1) ﬁ (4): Thm. 5.12
	(4) ﬁ (2), (4) ﬁ (3): Thm 5.14 and 5.16
	Theorem 5.12 If A ﬁ* x, then there is a parse tree with root A and yield x
	Proof Induction on number of derivations
	Basis A ﬁ1 x, A Æ x Œ P. \ Parse tree in Fig. 5.8(p187).
	Induction Assume AÆX1X2…Xn Œ P, 1£"i£n: Xiﬁkixi, and x=x1x2…xn
	1) If Xi Œ S, Xi = xi, Xi ﬁki (ﬁ0; =) xi. \ parse tree with leaf xi Œ S.
	2) If Xi Œ N, Xi ﬁki xi. \ parse tree with root Xi and yield xi.(IH)
	\ A ﬁ X1X2…Xn ﬁk1 x1X2…Xn ﬁk2 x1x2…Xn ﬁk3 … ﬁkn x1x2…xn.
	\ If A ﬁm x1x2…xn = x(m³1) where Sn ki = m-1, then
	parse tree with root A and yield x.(Fig. 5.9; p188)
	Theorem 5.14 If there is a parse tree with root A and yield x, A ﬁlm* x.
	Proof Induction on height of a tree
	Basis Parse tree with height 1, in Fig. 5.8. A Æ x Œ P. A ﬁlm x.
	Induction Consider a parse tree with root A, height m, and sons X1, X2, …, Xn from left to right,...
	1) If Xi Œ S, Xi = xi. Xi ﬁlm0 xi.
	2) If Xi Œ N, Xi ﬁlm+ xi.(IH; with height is less than m)
	A ﬁlm X1X2…Xn ﬁlm* x1X2…Xn ﬁlm* x1x2…Xn ﬁlm* x1x2…xn.
	Theorem 5.16 If there is a parse tree with root A and yield x, A ﬁrm* x.
	Proof Induction on height of a tree(similar to leftmost derivation)
	A ﬁrm X1X2…Xn ﬁrm* X1X2…xn ﬁrm* X1x2…xn ﬁrm* x1x2…xn.

