
Chapter	11

Introduction	to	
Computational	
Complexity

Copyright © 2011 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1

Introduction to Computation 2

Introduction	to	Computational	
Complexity

• A	decision	problem	is	decidable	if	there	is	an	
algorithm	that	can	answer	it	in	principle

• In	this	chapter,	we	try	to	identify	the	problems	for	
which	there	are	practical algorithms
– Ones	that	can	answer	reasonable‐size	instances	in	a	
reasonable	amount	of	time

• The	satisfiability	problem is	decidable,	but	the	known	
algorithms	aren’t	much	of	an	improvement	on	the	
brute‐force	algorithm	that	takes	exponential	time

The	Time	Complexity	of	a	Turing	
Machine,	and	the	Set	P

• The	set	P is	the	set	of	problems	that	can	be	decided	
by	a	TM	in	polynomial	time,	as	a	function	of	the	
instance	size.		(Brute‐force	algorithms	tend	to	be	
exponential)

• NP is	defined	similarly,	except	that	we	allow	the	use	
of	a	nondeterministic	TM

• Most	people	assume	that	NP is	a	larger	set,	but	no	
one	has	been	able	to	demonstrate	that	P  NP

• We	discuss	NP‐complete	problems,	which	are	hardest	
problems	in	NP,	and	show	that	the	satisfiability	
problem	is	one	of	these

Introduction to Computation 3

The	Time	Complexity	of	a	Turing	
Machine,	and	the	Set	P (cont’d.)

• A	TM	deciding	a	language	L  *	solves	a	decision	
problem:	Given	x  *,	is	x  L?
– A	measure	of	the	size	of	the	problem	is	the	length	of	
the	input	string	x

Introduction to Computation 4

The	Time	Complexity	of	a	Turing	
Machine,	and	the	Set	P (cont’d.)

• Definition	11.1:	Suppose	T is	a	TM	with	input	
alphabet	 that	eventually	halts	on	every	input	string
– The	time	complexity of	T	is	the	function	T :	Գ Գ,	
where	T(n)	is	defined	by	considering,	for	every	input	
string	of	length	n in	*,	the	number	of	moves	Tmakes	
on	that	string	before	halting,	and	letting	T(n)	be	the	
maximum	of	these	numbers

– When	we	refer	to	a	TM	with	a	certain	time	complexity,	
it	will	be	understood	that	it	halts	on	every	input

Introduction to Computation 5

The	Time	Complexity	of	a	Turing	
Machine,	and	the	Set	P (cont’d.)

• Definition	11.4:		If	f and	g are	partial	functions	from	
to	 + ;	that	is,	both	functions	have	values	that	are	

nonnegative	real	numbers	wherever	they	are	defined
– We	say	that	f =	O(g),	or	f	(n)	=	O(g(n))		(which	we	read	
“f is	big‐oh	of	g”	or	“f(n)	is	big‐oh	of	g(n)”)	if,	for	some	
positive	numbers	C and	N,	f	(n)	 C	g(n)	for	every	n  N

– For	example,	every	polynomial	of	degree	kwith	
positive	leading	coefficient	is	O(nk)

Introduction to Computation 6

The	Time	Complexity	of	a	Turing	
Machine,	and	the	Set	P (cont’d.)

• An	instance	of	the	satisfiability	problem is	a	Boolean	
expression		
– It	involves	Boolean	variables	x1,	x2,	…	,	xn and	the	
logical	connectives	,	,	and	

– It	is	in	conjunctive	normal	form	(the	conjunction	of	
several	clauses,	each	of	which	is	a	disjunction)

• Is	there	an	assignment	of	truth	values	to	the	variables	
that	satisfies	the	expression	(makes	it	true)?
– This	problem	is	clearly	decidable

• We	could	simply	try	every	possible	assignment	of	values	
to	variables

Introduction to Computation 7

The	Time	Complexity	of	a	Turing	
Machine,	and	the	Set	P (cont’d.)

• The	traveling	salesman	problem considers	n cities	
that	a	salesman	must	visit,	with	a	distance	specified	
for	every	pair	of	cities
– It’s	simplest	to	formulate	this	as	an	optimization	
problem
• Determine	the	order	that	minimizes	the	total	distance	
traveled

– We	can	turn	this	into	a	decision	problem	by	
introducing	a	variable	k and	asking	whether	there	is	an	
order	in	which	the	cities	could	all	be	visited	by	
traveling	no	more	than	distance	k

Introduction to Computation 8

The	Time	Complexity	of	a	Turing	
Machine,	and	the	Set	P (cont’d.)

• There’s	a	brute‐force	solution	to	this	problem	too
– Consider	all	n!	possible	permutations	of	the	cities

• With	current	hardware	we	can	solve	very	large	
problems,	if	the	problems	require	time	O(n)

• We	can	still	solve	largish	problems	if	they	take	time	
O(n2)	or	even	O(n3)

• Exponential	problems	are	another	story
– If	the	problem	really	requires	time	proportional	to	2n,	
then	doubling	the	speed	of	the	machine	only	allows	us	
to	increase	the	size	of	the	problem	by	1!

Introduction to Computation 9

The	Time	Complexity	of	a	Turing	
Machine,	and	the	Set	P (cont’d.)

• Showing	that	a	brute‐force	approach	takes	a	long	
time	does	not	necessarily	mean	that	the	problem	is	
complex
– The	satisfiability	problem	and	the	traveling	salesman	
problem	are	assumed	to	be	hard,	not	because	the	
brute‐force	approach	takes	exponential	time,	but	
because	no	one	has	found	a	way	of	solving	either	
problem	that	doesn’t take	at	least	exponential	time

Introduction to Computation 10

The	Time	Complexity	of	a	Turing	
Machine,	and	the	Set	P (cont’d.)

• What	constitutes	a	tractable problem?
– The	most	common	answer	is	those	that	can	be	solved	
in	polynomial	time	on	a	TM	or	other	computer

– One	reason	for	this	characterization	is	that	it	is	
relatively	robust,	as	problems	that	can	be	solved	in	
polynomial	time	on	any	computer	can	be	solved	in	
polynomial	time	on	a	TM	as	well,	and	vice‐versa

Introduction to Computation 11

The	Time	Complexity	of	a	Turing	
Machine,	and	the	Set	P (cont’d.)

• Definition	11.5:		P is	the	set	of	languages	L such	that	
for	some	TM	T deciding	L and	some	k  ,													
T(n)	=	O(nk)	

• The	satisfiability	and	traveling	salesman	problems	
seem	to	be	good	candidates	for	real‐life	problems	
that	are	not	in	P

Introduction to Computation 12

The	Set	NP and	Polynomial	Verifiability

• The	satisfiability	problem	seems	like	a	hard	problem
– Testing	a	potential	answer	is	easy,	but	there	are	an	
exponential	number	of	potential	answers

• We	can	approach	this	problem	nondeterministically
– We	guess	an	answer	(a	particular	truth	assignment)	
and	then	test	it	deterministically	

– This	can	be	done	in	polynomial	time

Introduction to Computation 13

The	Set	NP and	Polynomial	Verifiability	
(cont’d.)

• Definition	11.6:	If	T is	an	NTM	with	input	alphabet	
such	that,	for	every	x  *,	every	possible	sequence	
of	moves	of	T on	input	x eventually	halts,	the	time	
complexity	T :	  is	defined	as	follows:
– Let	T(n)	be	the	maximum	number	of	moves	T can	
possibly	make	on	any	input	string	of	length	n before	
halting		

– As	before,	if	we	speak	of	an	NTM	as	having	a	time	
complexity,	we	are	assuming	implicitly	that	no	input	
string	can	cause	it	to	loop	forever	

Introduction to Computation 14

The	Set	NP and	Polynomial	Verifiability	
(cont’d.)

• Definition	11.7:	NP is	the	set	of	languages	L such	that	
for	some	NTM	T that	cannot	loop	forever	on	any	
input,	and	some	integer	k,		T accepts	L and	
T(n)	=	O(nk)		
– We	say	that	a	language	in	NP can	be	accepted	in	
nondeterministic	polynomial	time

– It	is	clear	that	P  NP
– The	Sat problem	is	in	NP (the	“guess‐and‐test”	
strategy	is	typical	of	problems	in	NP,	and	we	can	
formalize	this	by	constructing	an	appropriate	NTM)

Introduction to Computation 15

The	Set	NP and	Polynomial	Verifiability	
(cont’d.)

• Definition	11.10:	If	L  *,	we	say	that	a	TM	T is	a	
verifier for	L	if:	
– T accepts	a	language	L1	  *{$}*,	T halts	on	every	
input,	and	

– L =	{x  *	|	for	some	a  *,	x$a  L1}		(we	will	call	
such	a	value	a a	certificate	for	x)

• A	verifier	T is	a	polynomial‐time	verifier if:
– There	is	a	polynomial	p such	that	for	every	x and	every	
a in		*,	the	number	of	moves	Tmakes	on	the	input	
string	x$a is	no	more	than	p(|x|)

Introduction to Computation 16

The	Set	NP and	Polynomial	Verifiability	
(cont’d.)

• Theorem	11.11:	For	every	language	L  *,	L  NP if	
and	only	if	L is	polynomially	verifiable
– i.e.,	there	is	a	polynomial‐time	verifier	for	L

• Proof:	See	book
• A	verifier	for	the	satisfiability	problem	could	take	a	
specific	truth	assignment	as	a	certificate;	the	
traveling	salesman	problem	could	take	a	permutation	
of	the	cities	as	a	certificate

Introduction to Computation 17

Polynomial‐Time	Reductions	and							
NP‐Completeness

• Just	as	we	can	show	that	a	problem	is	decidable	by	
reducing	it	to	another	one	that	is,	we	can	show	that	a	
language	is	in	P by	reducing	it	to	another	that	is
– In	the	case	of	decidability,	we	only	needed	the	
reduction	to	be	computable

– Here	we	need	the	reduction	function	to	be	computable	
in	polynomial	time

Introduction to Computation 18

Polynomial‐Time	Reductions	and							
NP‐Completeness	(cont’d.)

• Definition	11.12:	If	L1 and	L2 are	languages	over	
respective	alphabets	1 and	2,	a	polynomial‐time	
reduction from	L1 to	L2 is	a	function	f :	1*	2*	
satisfying	two	conditions
– First:	for	every	x  1*,				x  L1 if	and	only	if	f	(x)	 L2
– Second:	f can	be	computed	in	polynomial	time	

• i.e.,	there	is	a	TM	with	polynomial	time	complexity	that	
computes	f

• If	there	is	a	polynomial‐time	reduction	from	L1 to	L2,
we	write	L1 p L2 and	say	that	L1 is	polynomial‐time	
reducible	to	L2.

Introduction to Computation 19

Polynomial	‐Time	Reductions	and						
NP‐Completeness	(cont’d.)

• Theorem	11.13:		
– Polynomial‐time	reducibility	is	transitive:

• If	L1 p L2 and	L2 p L3 then	L1 p L3
– If	L1 p L2 and	L2  P,	then	L1  P

• Proof	sketch:	
– For	the	first	statement,	simply	use	the	composition	of	
the	reduction	functions

– For	the	second	statement,	simply	combine	the	TM	that	
accepts	L2 and	the	one	that	computes	the	reduction	f

Introduction to Computation 20

Polynomial‐Time	Reductions	and							
NP‐Completeness	(cont’d.)

• Definition	11.16:	A	language	L is	NP‐hard if	L1 p L for	
every	L1  NP;	L is	NP‐complete if	L  NP and	L is	NP‐
hard

• Theorem	11.17:
– If	L and	L1 are	languages	such	that	L is	NP‐hard	and						
L p L1,	then	L1 is	also	NP‐hard

– If	L is	any	NP‐complete	language,	then	L  P if	and	only	
if		P	=	NP

• Proof	of	Theorem	11.17:	both	parts	follow	from	
Theorem	11.13

Introduction to Computation 21

The	Cook‐Levin	Theorem

• Theorem	11.18:	
– The	language	Satisfiable (or	the	corresponding	
decision	problem	Sat)	is	NP‐complete

• Proof:	
– We	know	that	Satisfiable is	in	NP,	so	we	need	to	show	
that	every	language	L  NP is	reducible	to	Sat

– We	do	this	by	using	a	TM	T that	accepts	L;	the	
reduction	considers	the	details	of	T and	takes	a	string	x
to	a	Boolean	formula	that	is	satisfiable	if	and	only	if	x	is	
accepted	by	T

– The	details	are	complex	and	can	be	found	in	the	book
Introduction to Computation 22

Some	Other	NP‐Complete	Problems

• Theorem	11.19:	
– The	complete	subgraph	problem	(Given	a	graph	G and	
an	integer	k,	does	G have	a	complete	subgraph	with	k
vertices?)	is	NP‐complete.

• Proof	sketch:	
– By	reduction	from	Satisfiability.			For	a	Boolean	
expression	x in	conjunctive	normal	form,	a	graph	can	
be	constructed	with	vertices	corresponding	to	
occurrences	of	literals	in	x,	and	edges	and	an	integer	k
chosen	so	that	x is	satisfiable	if	and	only	if	the	graph	
has	a	complete	subgraph	with	k vertices

Introduction to Computation 23

Some	Other	NP‐Complete	Problems

• The	problem	3‐Sat is	the	same	as	Sat except	that	
every	conjunct	in	the	CNF	expression	is	assumed	to	
be	the	disjunction	of	three	or	fewer	literals

• Theorem	11.20:	3‐Sat is	NP‐complete.		Proof	sketch:
– 3‐Sat is	in	NP because	Sat	is
– To	get	a	reduction		f from	Sat to	3‐Sat,	we	let	f	(x)	
involve	the	variables	in	x as	well	as	new	ones

– The	trick	is	to	incorporate	the	new	variables	so	that				
• For	every	satisfying	truth	assignment	to	the	variables	of	
x,	some	assignment	to	the	new	variables	makes	f(x)	true

• For	every	nonsatisfying	assignment	to	the	variables	of	x,	
no	assignment	to	the	new	variables	makes	f(x)	true

Introduction to Computation 24

Some	Other	NP‐Complete	Problems	
(cont’d.)

• A	vertex	cover for	a	graph	G is	a	set	C of	vertices	such	
that	every	edge	of	G has	an	endpoint	in	C

• The	vertex	cover	problem is	this:	Given	a	graph	G and	
an	integer	k,	is	there	a	vertex	cover	for	Gwith	k
vertices?

• A	k‐coloring of	G is	an	assignment	to	each	vertex	of	
one	of	the	k colors	so	that	no	two	adjacent	vertices	
are	colored	the	same

• The	k‐colorability	problem:	Given	G and	k,	is	there	a		
k‐coloring	of	G?

Introduction to Computation 25

Some	Other	NP‐Complete	Problems	
(cont’d.)

• Theorem	11.21:	The	vertex	cover	problem	is	NP‐
complete

• Proof:	We	show	that	the	problem	is	NP‐hard	by	
reducing	the	complete	subgraph	problem	to	it
– The	problem	is	clearly	in	NP

• Theorem	11.22:	The	k‐colorability problem	is										
NP‐complete

• Proof:	by	reducing	3‐Sat to	k‐colorability
– This	problem	is	also	clearly	in	NP

Introduction to Computation 26

Some	Other	NP‐Complete	Problems	
(cont’d.)

• We	now	have	five	problems	that	are	NP‐complete
• There	are	thousands	of	others	that	are	also	known	to	
be	NP‐complete

• Many	real‐life	decision	problems	require	some	kind	
of	solution
– If	a	polynomial‐time	algorithm	does	not	present	itself,	
it	is	worth	checking	whether	the	problem	is	NP‐
complete

– If	so,	finding	such	an	algorithm	will	be	as	hard	as	
proving	that		P = NP

Introduction to Computation 27

