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ds
tive_construct

 set fi
 set od

cedure calls, ...

{ | guarded command}
 list

t }

 enclosed ... ”

GOL 60
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2. Two statements made from guarded comman
statement ::= alternative construct | repeata

 | “other statements”
alternative construct ::= if guarded command
repeatative construct ::= do guarded comman

“other statements” assignment statements, pro

guarded command set::= guarded command 
guarded command ::=  guard  guarded

guard ::= boolean_expression
guarded list ::= statement { ; statemen

{ ... }: “followed by zero or more instances of the
= ( ... )*.
Extended BNF(Backus-Nauer Form) AL
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ded command set

{ | guarded command}

nordered set
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Two separators ; in guarded list and | in guar

guarded list ::= statement { ; statement }
guarded command set::= guarded command 

S1 ; S2 ; ... ; Sn.
A sequence of Si’s.

G1 | G2 | ... | Gn.
An arbitrarily ordered enumeration of an u
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ort;
uard is selected for exe-

n a very modest fashion
e of x and y.
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Altenative construct
if ... fi.

If none of the guard is true, the program will ab
otherwise an arbitrary guarded list with a true g
cution.

(Note) if fi   abort
An example - illustrating the nondeterminancy i
For fixed x and y assigns to m the maximum valu

if x  y  m := x
 | x  y  m := y
fi.
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tion but termination.

 selected a guarded list
 execution of a guarded

 properly, we know all
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Repeatative constructs
do ... od

None of the guards is true will not leads to abor

When initially or upon completed execution of
one or more guards are true, a new selection for
list with a ture will take place, and so on.

When the repeatative constuct had terminated
guards are false.

(Note) do od   skip.



CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 6”

6

ome what greater glory

4,

 (q2  q3)  (q3  q4)
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An example - showing the nondeterminancy in s

Assigns to a variables q1, q2, q3, and q4
a permutation of the values Q1, Q2, Q3, and Q

such that q1  q2  q3  q4 .

q1, q2, q3, q4 := Q1, Q2, Q3, Q4;
do  q1 > q2  q1, q2 := q2, q1

| q2 > q3  q2, q3 := q3, q2
| q3 > q4  q3, q4 := q4, q3

od.

(q1 > q2)  (q2 > q3)  (q3 > q4)  = (q1  q2) 
= (q1  q2  q3  q4)
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l state
mined!

i) defined for 0  i  n:
0  i  n: f(k)  f(i)).
place of a maximun)
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An example - Not only computation but also fina
is not necessary uniquely deter

Determine k such that
for fixed value n(n  0) and a fixed function f(

k will eventually satisfy 0  k  n and (i: 
(Eventually k should be the 

k := 0; j := 1;
do j n if f(j)  f(k)  j := j + 1

 | f(j)  f(k)  k := j; j := j + 1
fi

od.
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3. Formal Definitos of the Semantics
3.1 Notational Prelude
P, Q, R to denote (predicate defining)

boolean function defined on all points of the s
“conditions” satisfied by all states

for which the boolean function is true.

T denotes the condition that is satisfied by all sta
F denotes the condition that is satisfied by no sta

Hoare sufficient pre-condition
.. the mechanisms will not produ
(but may fail to terminate)

Dijkstra necessary and sufficinet pre-conditio
 i.e, so called “weakest” pre-cond

.. the mechanisms are guranteed to 
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l state of the system ..
rly terminating activity
e post-condition R.

perties.

 Excluded Miracle

 Q).

) = wp(S, P or Q).
Q))  wp(S, P or Q).
9/18/17 Kwang-Moo Choe

wp(S, R) S: a statement list and
R: some condition of the system

to denote the weakest pre-condition for the initia
activation of S is guranteed to lead to a prope
leaving the system in a final state satisfying th

wp “predicate transformer” has following pro

1. S: wp(S, F) = F. Law of

2. S: If P  Q, then wp(S, P)  wp(S, Q).

3. S: (wp(S, P) and wp(S, Q)) = wp(S, P and

4. deterministic S: (wp(S, P) or wp(S, Q)
4’. nondeterministic S: (wp(S, P) or wp(S, 
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ently well,

enoted by “skip” is

ent “x := E” is

g R
s replaced by (E).

oncatenation operator
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We know the semantics of a mechanism S suffici
if we know its “predicate transformer”, i.e.,
can derive wp(S, R) for any post-condition R.

Example 1. The semantics of empty statement, d
post-condition R: wp(“skip”, R) = R.

Example 2. The semantics of assignment statem
wp(“x := E”, R) = RE

x where
RE

x denotes a copy of the predicate definin
in each occurence of the variable x i

Example 3. The semantics of semicolon “;” as c
wp(“S1; S2”, R) = wp(S1, wp(S2, R)).
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)).

or execution will lead to

, R), then

e state space and
ivation S is guranteed to
e system in a final state
t 1(compre to its initial
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3.2 The Alternative Construct
Let IF  if B1  SL1 | ... | Bn  SLn fi.
Let BB  (i: 1  i  n: Bi). Then
wp(IF, R) = BB  (i: 1  i  n: Bi  wp(SLi, R

BB: IF will not lead to abortion.
Bi  wp(SLi, R): each guareded list eligible f

an acceptable final state.

Theorem 1. If (i: 1  i  n: (Q  Bi)  wp(SLi
(Q  BB)  wp(IF, R).

Let t denotes some integer function defined on th
wdec(t) denotes the weakest precondition .. act
leads to a proper termination activity leaving th
such that the value of t is decreased by at leas
value)
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, R),  then
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Theorem 2. If (i: 1  i  n: (Q  Bi)  wp(SLi
(Q  BB)  wdec(IF, R).
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0. Then

or execution will lead to
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3.3 The Repeatative Construct
Let DO  do B1  SL1 | ... | Bn  SLn od.
Let H0(R) = R  BB and

Hk(R) = wp(IF, Hk(R))  H0(R) for k  
wp(DO, R) = (k: k  0: Hk(R)).

BB: IF will not lead to abortion.
Bi  wp(SLi, R): each guareded list eligible f

an acceptable final state.
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ue for (m = x).
tatement “m := x”.
 (x  y) = x  y.
ondition as guard.

.
nt “m := y”.
 (y  y) = y  x.
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4. Formal Derivation of Programs
m = max(x, y)

R: ((m = x)  (m = y))  (m  x)  (m  y).

The assignment statement “m := x” will make tr
weakest preconditon to make R is true after the s

wp(“m := x”, R)  (x = x  x = y)  (x  x) 
 if x  y  m := x fi the weakest prec

BB = (x  y)  T. Weakening BB. add() guards
The alternative guard is precondion of assignme

wp(“m := y”, R)  (y = x  y = y)  (y  x) 
 if x  y  m := x

 | y  x  m := y
fi.

BB = (x  y)  (y  x) = T.
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= gcd(X, Y).

ariance of P” od

(E2 > 0).
gcd(y, x) = …

y  t0) = (x  t0).
) = (y > 0). P  wdec.
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Example of repeatative construct
Given two positive numbers X and Y, find x .. x 

“establish the relation P to be kept invariant”
do “decrease t as long as possible uncer v

P: (gcd(X, Y) = gcd(x, y))  (x > 0)  (y > 0).
Easy initialization of P

x := X;  y := Y

Do something under the loop invariance of P
P  B  wp(“x, y := E1, E2”, P) = 

= (gcd(X, Y) = gcd(E1, E2))  (E1 > 0)  
gcd(x, y) = gcd(x  y, y) = gcd(x, y  x) = 

Consider t = x + y.
wp(“x := x  y”, t   t0) = wp(“x := x  y”, x + 

tmin = x.  wdec(“x := x  y”, t) = (x  x + y



CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 16”

16

)  (x  y > 0)  (y > 0)

 guard y > x.
)  (x > 0)  (y  x > 0)
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wp(“x := x  y”, P) = (gcd(X, Y) = gcd(x  y, y)
= x > y.

x := X;  y := Y;
do x > y  x := x  y od.

(BB = x  y)  / (x = gcd(X, Y))
Alternate assignment y := y  x is required as its
wp(“y := y  x”, P) = (gcd(X, Y) = gcd(x, y  x)

= y > x.

x := X;  y := Y;
do x > y  x := x  y
 | y > x  y := y  x
od.

BB = x = y. (P  x = y)  x = gcd(X, Y).



CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 17”

17
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)
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(Note) If you select t = x + 2y
x := X;  y := Y;
do x > y  x := x  y
 | y > x  x, y := y, x
od.

x :=X; y := Y; (version A
while x  y do if x > y then x := x  y

   else y := y  x fi od.

x :=X; y := Y; (version B
while x  y do while x > y do x := x  y od;

while y > x do y := y  x od.

x := X; y := Y; (original)
do x > y  x := x  y
 | y > x  y := y  x
od
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if X > 0 and Y > 0 
x := X; y := Y;
do x > y  x := x  y
   | y > x  y := y  x
od

fi
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P) loop_body;
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syntactic sugar in C (init P; test BB; recover 

init P

recover P

loop body

BB?
P BB

P

P

P P BB 

?P
P
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initialize P

P is still valid

) P is distroyed

recover P
9/18/17 Kwang-Moo Choe

Another Example

Sum, i := 0, 1; P  (Sum =  k=1
i-1  k)

do i  100  P  (Sum =  k=1
i-1  k)

Sum := Sum + i; P’  (Sum =  k=0
i   k

i := i +1 P  (Sum =  k=1
i-1  k)

od

P  (i  100)  (Sum =  k=1
i-1  k)  (i = 101)

= (Sum =  k=1
100  k) = (Sum =  5050).

101  i is the nonnegative decreasing functon
loop terminate
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	| y > x Æ y := y - x
	od
	fi
	syntactic sugar in C (init P; test BB; recover P) loop_body;
	init P
	Another Example
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	loop terminate

