
CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 1”

1

ams

 1975).

76.
9/18/17 Kwang-Moo Choe

Guarded Commands,
Nondeterminancy and

Formal Derivation of Progr

Edsger W. Dijkstra

CACM 18, 8 pp. 453-457 (Aug.

A Discipline of Programming, Prentice-Hall, 19
book

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 2”

2

ds
tive_construct

 set fi
 set od

cedure calls, ...

{ | guarded command}
 list

t }

 enclosed ... ”

GOL 60
9/18/17 Kwang-Moo Choe

2. Two statements made from guarded comman
statement ::= alternative construct | repeata

 | “other statements”
alternative construct ::= if guarded command
repeatative construct ::= do guarded comman

“other statements” assignment statements, pro

guarded command set::= guarded command
guarded command ::= guard  guarded

guard ::= boolean_expression
guarded list ::= statement { ; statemen

{ ... }: “followed by zero or more instances of the
= (...)*.
Extended BNF(Backus-Nauer Form) AL

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 3”

3

ded command set

{ | guarded command}

nordered set
9/18/17 Kwang-Moo Choe

Two separators ; in guarded list and | in guar

guarded list ::= statement { ; statement }
guarded command set::= guarded command

S1 ; S2 ; ... ; Sn.
A sequence of Si’s.

G1 | G2 | ... | Gn.
An arbitrarily ordered enumeration of an u

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 4”

4

ort;
uard is selected for exe-

n a very modest fashion
e of x and y.
9/18/17 Kwang-Moo Choe

Altenative construct
if ... fi.

If none of the guard is true, the program will ab
otherwise an arbitrary guarded list with a true g
cution.

(Note) if fi  abort
An example - illustrating the nondeterminancy i
For fixed x and y assigns to m the maximum valu

if x  y  m := x
 | x  y  m := y
fi.

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 5”

5

tion but termination.

 selected a guarded list
 execution of a guarded

 properly, we know all
9/18/17 Kwang-Moo Choe

Repeatative constructs
do ... od

None of the guards is true will not leads to abor

When initially or upon completed execution of
one or more guards are true, a new selection for
list with a ture will take place, and so on.

When the repeatative constuct had terminated
guards are false.

(Note) do od  skip.

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 6”

6

ome what greater glory

4,

 (q2  q3)  (q3  q4)
9/18/17 Kwang-Moo Choe

An example - showing the nondeterminancy in s

Assigns to a variables q1, q2, q3, and q4
a permutation of the values Q1, Q2, Q3, and Q

such that q1  q2  q3  q4 .

q1, q2, q3, q4 := Q1, Q2, Q3, Q4;
do q1 > q2  q1, q2 := q2, q1

| q2 > q3  q2, q3 := q3, q2
| q3 > q4  q3, q4 := q4, q3

od.

(q1 > q2)  (q2 > q3)  (q3 > q4) = (q1  q2) 
= (q1  q2  q3  q4)

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 7”

7

l state
mined!

i) defined for 0  i  n:
0  i  n: f(k)  f(i)).
place of a maximun)
9/18/17 Kwang-Moo Choe

An example - Not only computation but also fina
is not necessary uniquely deter

Determine k such that
for fixed value n(n  0) and a fixed function f(

k will eventually satisfy 0  k  n and (i:
(Eventually k should be the

k := 0; j := 1;
do j n if f(j)  f(k)  j := j + 1

 | f(j)  f(k)  k := j; j := j + 1
fi

od.

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 8”

8

tate space.

tes.
te at all.

ce the wrong result

n,
ition
produce the right result.
9/18/17 Kwang-Moo Choe

3. Formal Definitos of the Semantics
3.1 Notational Prelude
P, Q, R to denote (predicate defining)

boolean function defined on all points of the s
“conditions” satisfied by all states

for which the boolean function is true.

T denotes the condition that is satisfied by all sta
F denotes the condition that is satisfied by no sta

Hoare sufficient pre-condition
.. the mechanisms will not produ
(but may fail to terminate)

Dijkstra necessary and sufficinet pre-conditio
 i.e, so called “weakest” pre-cond

.. the mechanisms are guranteed to

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 9”

9

l state of the system ..
rly terminating activity
e post-condition R.

perties.

 Excluded Miracle

 Q).

) = wp(S, P or Q).
Q))  wp(S, P or Q).
9/18/17 Kwang-Moo Choe

wp(S, R) S: a statement list and
R: some condition of the system

to denote the weakest pre-condition for the initia
activation of S is guranteed to lead to a prope
leaving the system in a final state satisfying th

wp “predicate transformer” has following pro

1. S: wp(S, F) = F. Law of

2. S: If P  Q, then wp(S, P)  wp(S, Q).

3. S: (wp(S, P) and wp(S, Q)) = wp(S, P and

4. deterministic S: (wp(S, P) or wp(S, Q)
4’. nondeterministic S: (wp(S, P) or wp(S,

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 10”

10

ently well,

enoted by “skip” is

ent “x := E” is

g R
s replaced by (E).

oncatenation operator
9/18/17 Kwang-Moo Choe

We know the semantics of a mechanism S suffici
if we know its “predicate transformer”, i.e.,
can derive wp(S, R) for any post-condition R.

Example 1. The semantics of empty statement, d
post-condition R: wp(“skip”, R) = R.

Example 2. The semantics of assignment statem
wp(“x := E”, R) = RE

x where
RE

x denotes a copy of the predicate definin
in each occurence of the variable x i

Example 3. The semantics of semicolon “;” as c
wp(“S1; S2”, R) = wp(S1, wp(S2, R)).

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 11”

11

)).

or execution will lead to

, R), then

e state space and
ivation S is guranteed to
e system in a final state
t 1(compre to its initial
9/18/17 Kwang-Moo Choe

3.2 The Alternative Construct
Let IF  if B1  SL1 | ... | Bn  SLn fi.
Let BB  (i: 1  i  n: Bi). Then
wp(IF, R) = BB  (i: 1  i  n: Bi  wp(SLi, R

BB: IF will not lead to abortion.
Bi  wp(SLi, R): each guareded list eligible f

an acceptable final state.

Theorem 1. If (i: 1  i  n: (Q  Bi)  wp(SLi
(Q  BB)  wp(IF, R).

Let t denotes some integer function defined on th
wdec(t) denotes the weakest precondition .. act
leads to a proper termination activity leaving th
such that the value of t is decreased by at leas
value)

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 12”

12

, R), then
9/18/17 Kwang-Moo Choe

Theorem 2. If (i: 1  i  n: (Q  Bi)  wp(SLi
(Q  BB)  wdec(IF, R).

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 13”

13

0. Then

or execution will lead to
9/18/17 Kwang-Moo Choe

3.3 The Repeatative Construct
Let DO  do B1  SL1 | ... | Bn  SLn od.
Let H0(R) = R  BB and

Hk(R) = wp(IF, Hk(R))  H0(R) for k 
wp(DO, R) = (k: k  0: Hk(R)).

BB: IF will not lead to abortion.
Bi  wp(SLi, R): each guareded list eligible f

an acceptable final state.

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 14”

14

ue for (m = x).
tatement “m := x”.
 (x  y) = x  y.
ondition as guard.

.
nt “m := y”.
 (y  y) = y  x.
9/18/17 Kwang-Moo Choe

4. Formal Derivation of Programs
m = max(x, y)

R: ((m = x)  (m = y))  (m  x)  (m  y).

The assignment statement “m := x” will make tr
weakest preconditon to make R is true after the s

wp(“m := x”, R)  (x = x  x = y)  (x  x) 
 if x  y  m := x fi the weakest prec

BB = (x  y)  T. Weakening BB. add() guards
The alternative guard is precondion of assignme

wp(“m := y”, R)  (y = x  y = y)  (y  x) 
 if x  y  m := x

 | y  x  m := y
fi.

BB = (x  y)  (y  x) = T.

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 15”

15

= gcd(X, Y).

ariance of P” od

(E2 > 0).
gcd(y, x) = …

y  t0) = (x  t0).
) = (y > 0). P  wdec.
9/18/17 Kwang-Moo Choe

Example of repeatative construct
Given two positive numbers X and Y, find x .. x

“establish the relation P to be kept invariant”
do “decrease t as long as possible uncer v

P: (gcd(X, Y) = gcd(x, y))  (x > 0)  (y > 0).
Easy initialization of P

x := X; y := Y

Do something under the loop invariance of P
P  B  wp(“x, y := E1, E2”, P) =

= (gcd(X, Y) = gcd(E1, E2))  (E1 > 0) 
gcd(x, y) = gcd(x  y, y) = gcd(x, y  x) =

Consider t = x + y.
wp(“x := x  y”, t  t0) = wp(“x := x  y”, x +

tmin = x.  wdec(“x := x  y”, t) = (x  x + y

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 16”

16

)  (x  y > 0)  (y > 0)

 guard y > x.
)  (x > 0)  (y  x > 0)
9/18/17 Kwang-Moo Choe

wp(“x := x  y”, P) = (gcd(X, Y) = gcd(x  y, y)
= x > y.

x := X; y := Y;
do x > y  x := x  y od.

(BB = x  y) / (x = gcd(X, Y))
Alternate assignment y := y  x is required as its
wp(“y := y  x”, P) = (gcd(X, Y) = gcd(x, y  x)

= y > x.

x := X; y := Y;
do x > y  x := x  y
 | y > x  y := y  x
od.

BB = x = y. (P  x = y)  x = gcd(X, Y).

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 17”

17

)

)

9/18/17 Kwang-Moo Choe

(Note) If you select t = x + 2y
x := X; y := Y;
do x > y  x := x  y
 | y > x  x, y := y, x
od.

x :=X; y := Y; (version A
while x  y do if x > y then x := x  y

 else y := y  x fi od.

x :=X; y := Y; (version B
while x  y do while x > y do x := x  y od;

while y > x do y := y  x od.

x := X; y := Y; (original)
do x > y  x := x  y
 | y > x  y := y  x
od

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 18”

18
9/18/17 Kwang-Moo Choe

if X > 0 and Y > 0 
x := X; y := Y;
do x > y  x := x  y
 | y > x  y := y  x
od

fi

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 19”

19

P) loop_body;
9/18/17 Kwang-Moo Choe

syntactic sugar in C (init P; test BB; recover

init P

recover P

loop body

BB?
P BB

P

P

P P BB

?P
P

CS322 E. W. Dijkstra, “Guarded command, Nondeterminancy and Formal Derivation of Programs 20”

20

initialize P

P is still valid

) P is distroyed

recover P
9/18/17 Kwang-Moo Choe

Another Example

Sum, i := 0, 1; P  (Sum = k=1
i-1 k)

do i  100  P  (Sum = k=1
i-1 k)

Sum := Sum + i; P’  (Sum = k=0
i k

i := i +1 P  (Sum = k=1
i-1 k)

od

P  (i  100)  (Sum = k=1
i-1 k)  (i = 101)

= (Sum = k=1
100 k) = (Sum = 5050).

101  i is the nonnegative decreasing functon
loop terminate

	Edsger W. Dijkstra
	CACM 18, 8 pp. 453-457 (Aug. 1975).
	book
	2. Two statements made from guarded commands
	·statementÒ ::= ·alternative constructÒ | ·repeatative_constructÒ
	| “·other statementsÒ”
	·alternative constructÒ ::= if ·guarded command setÒ fi
	·repeatative constructÒ ::= do ·guarded comman setÒ od
	“other statements” assignment statements, procedure calls, ...
	·guarded command setÒ::= ·guarded commandÒ { | ·guarded commandÒ}
	·guarded commandÒ ::= ·guardÒ Æ ·guarded listÒ
	·guardÒ ::= ·boolean_expressionÒ
	·guarded listÒ ::= ·statementÒ { ; ·statementÒ }
	Extended BNF(Backus-Nauer Form) ALGOL 60
	Two separators ; in ·guarded listÒ and | in ·guarded command setÒ
	·guarded listÒ ::= ·statementÒ { ; ·statementÒ }
	·guarded command setÒ::= ·guarded commandÒ { | ·guarded commandÒ}
	S1 ; S2 ; ... ; Sn.
	A sequence of Si’s.
	G1 | G2 | ... | Gn.
	An arbitrarily ordered enumeration of an unordered set
	Altenative construct
	if ... fi.
	If none of the guard is true, the program will abort;
	otherwise an arbitrary guarded list with a true guard is selected for execution.
	(Note) if fi º abort
	An example - illustrating the nondeterminancy in a very modest fashion
	For fixed x and y assigns to m the maximum value of x and y.
	if x ³ y Æ m := x
	| x £ y Æ m := y
	fi.
	Repeatative constructs
	do ... od
	None of the guards is true will not leads to abortion but termination.
	When initially or upon completed execution of selected a guarded list one or more guards are true...
	When the repeatative constuct had terminated properly, we know all guards are false.
	(Note) do od º skip.
	An example - showing the nondeterminancy in some what greater glory
	Assigns to a variables q1, q2, q3, and q4
	a permutation of the values Q1, Q2, Q3, and Q4,
	such that q1 £ q2 £ q3 £ q4 .
	q1, q2, q3, q4 := Q1, Q2, Q3, Q4;
	do q1 > q2 Æ q1, q2 := q2, q1
	| q2 > q3 Æ q2, q3 := q3, q2
	| q3 > q4 Æ q3, q4 := q4, q3
	od.
	Ø(q1 > q2) Ÿ Ø(q2 > q3) Ÿ Ø(q3 > q4) = (q1 £ q2) Ÿ (q2 £ q3) Ÿ (q3 £ q4)
	= (q1 £ q2 £ q3 £ q4)
	An example - Not only computation but also final state
	is not necessary uniquely determined!
	Determine k such that
	for fixed value n(n > 0) and a fixed function f(i) defined for 0 £ i < n:
	k will eventually satisfy 0 £ k < n and ("i: 0 £ i < n: f(k) ³ f(i)).
	(Eventually k should be the place of a maximun)
	k := 0; j := 1;
	do j ¹ n Æ if f(j) £ f(k) Æ j := j + 1
	| f(j) ³ f(k) Æ k := j; j := j + 1
	fi
	od.
	3. Formal Definitos of the Semantics
	3.1 Notational Prelude
	P, Q, R to denote (predicate defining)
	boolean function defined on all points of the state space.
	“conditions” satisfied by all states
	for which the boolean function is true.
	T denotes the condition that is satisfied by all states.
	F denotes the condition that is satisfied by no state at all.
	Hoare sufficient pre-condition
	.'. the mechanisms will not produce the wrong result
	(but may fail to terminate)
	Dijkstra necessary and sufficinet pre-condition,
	i.e, so called “weakest” pre-condition
	.'. the mechanisms are guranteed to produce the right result.
	wp(S, R) S: a statement list and
	R: some condition of the system
	to denote the weakest pre-condition for the initial state of the system .'.
	activation of S is guranteed to lead to a properly terminating activity
	leaving the system in a final state satisfying the post-condition R.
	wp “predicate transformer” has following properties.
	1. "S: wp(S, F) = F. Law of Excluded Miracle
	2. "S: If P ﬁ Q, then wp(S, P) ﬁ wp(S, Q).
	3. "S: (wp(S, P) and wp(S, Q)) = wp(S, P and Q).
	4. "deterministic S: (wp(S, P) or wp(S, Q)) = wp(S, P or Q).
	4’. "nondeterministic S: (wp(S, P) or wp(S, Q)) ﬁ wp(S, P or Q).
	We know the semantics of a mechanism S sufficiently well,
	if we know its “predicate transformer”, i.e.,
	can derive wp(S, R) for any post-condition R.
	Example 1. The semantics of empty statement, denoted by “skip” is
	"post-condition R: wp(“skip”, R) = R.
	Example 2. The semantics of assignment statement “x := E” is
	wp(“x := E”, R) = REx where
	REx denotes a copy of the predicate defining R
	in each occurence of the variable x is replaced by (E).
	Example 3. The semantics of semicolon “;” as concatenation operator
	wp(“S1; S2”, R) = wp(S1, wp(S2, R)).
	3.2 The Alternative Construct
	Let IF º if B1 Æ SL1 | ... | Bn Æ SLn fi.
	Let BB º ($i: 1 £ i £ n: Bi). Then
	wp(IF, R) = BB Ÿ ("i: 1 £ i £ n: Bi ﬁ wp(SLi, R)).
	BB: IF will not lead to abortion.
	Bi ﬁ wp(SLi, R): each guareded list eligible for execution will lead to an acceptable final state.
	Theorem 1. If ("i: 1 £ i £ n: (Q Ÿ Bi) ﬁ wp(SLi, R), then
	(Q Ÿ BB) ﬁ wp(IF, R).
	Let t denotes some integer function defined on the state space and
	wdec(t) denotes the weakest precondition .'. activation S is guranteed to leads to a proper termi...
	Theorem 2. If ("i: 1 £ i £ n: (Q Ÿ Bi) ﬁ wp(SLi, R), then
	(Q Ÿ BB) ﬁ wdec(IF, R).
	3.3 The Repeatative Construct
	Let DO º do B1 Æ SL1 | ... | Bn Æ SLn od.
	Let H0(R) = R Ÿ ØBB and
	Hk(R) = wp(IF, Hk(R)) ⁄ H0(R) for k > 0. Then
	wp(DO, R) = ($k: k ³ 0: Hk(R)).
	BB: IF will not lead to abortion.
	Bi ﬁ wp(SLi, R): each guareded list eligible for execution will lead to an acceptable final state.
	4. Formal Derivation of Programs
	m = max(x, y)
	R: ((m = x) ⁄ (m = y)) Ÿ (m ³ x) Ÿ (m ³ y).
	The assignment statement “m := x” will make true for (m = x).
	weakest preconditon to make R is true after the statement “m := x”.
	wp(“m := x”, R) º (x = x ⁄ x = y) Ÿ (x ³ x) Ÿ (x ³ y) = x ³ y.
	\ if x ³ y Æ m := x fi the weakest precondition as guard.
	BB = (x ³ y) ¹ T. Weakening BB. add(⁄) guards.
	The alternative guard is precondion of assignment “m := y”.
	wp(“m := y”, R) º (y = x ⁄ y = y) Ÿ (y ³ x) Ÿ (y ³ y) = y ³ x.
	\ if x ³ y Æ m := x
	| y ³ x Æ m := y
	fi.
	BB = (x ³ y) ⁄ (y ³ x) = T.
	Example of repeatative construct
	Given two positive numbers X and Y, find x .'. x = gcd(X, Y).
	“establish the relation P to be kept invariant”
	do “decrease t as long as possible uncer variance of P” od
	P: (gcd(X, Y) = gcd(x, y)) Ÿ (x > 0) Ÿ (y > 0).
	Easy initialization of P
	x := X; y := Y
	Do something under the loop invariance of P
	P Ÿ B ﬁ wp(“x, y := E1, E2”, P) =
	= (gcd(X, Y) = gcd(E1, E2)) Ÿ (E1 > 0) Ÿ (E2 > 0).
	gcd(x, y) = gcd(x - y, y) = gcd(x, y - x) = gcd(y, x) = …
	Consider t = x + y.
	wp(“x := x - y”, t £ t0) = wp(“x := x - y”, x + y £ t0) = (x £ t0).
	tmin = x. \ wdec(“x := x - y”, t) = (x < x + y) = (y > 0). \P ﬁ wdec.
	wp(“x := x - y”, P) = (gcd(X, Y) = gcd(x - y, y)) Ÿ (x - y > 0) Ÿ (y > 0)
	= x > y.
	x := X; y := Y;
	do x > y Æ x := x - y od.
	(ØBB = x £ y) /ﬁ (x = gcd(X, Y))
	Alternate assignment y := y - x is required as its guard y > x.
	wp(“y := y - x”, P) = (gcd(X, Y) = gcd(x, y - x)) Ÿ (x > 0) Ÿ (y - x > 0)
	= y > x.
	x := X; y := Y;
	do x > y Æ x := x - y
	| y > x Æ y := y - x
	od.
	ØBB = x = y. (P Ÿ x = y) ﬁ x = gcd(X, Y).
	(Note) If you select t = x + 2y
	x := X; y := Y;
	do x > y Æ x := x - y
	| y > x Æ x, y := y, x
	od.
	x :=X; y := Y; (version A)
	while x ¹ y do if x > y then x := x - y
	else y := y - x fi od.
	x :=X; y := Y; (version B)
	while x ¹ y do while x > y do x := x - y od;
	while y > x do y := y - x od.
	x := X; y := Y; (original)
	do x > y Æ x := x - y
	| y > x Æ y := y - x
	od
	if X > 0 and Y > 0 Æ
	x := X; y := Y;
	do x > y Æ x := x - y
	| y > x Æ y := y - x
	od
	fi
	syntactic sugar in C (init P; test BB; recover P) loop_body;
	init P
	Another Example
	Sum, i := 0, 1; P º (Sum = Âk=1i-1 k) initialize P
	do i £ 100 Æ P º (Sum = Âk=1i-1 k) P is still valid
	Sum := Sum + i; P’ º (Sum = Âk=0i k) P is distroyed
	i := i +1 P º (Sum = Âk=1i-1 k) recover P
	od
	P Ÿ Ø(i £ 100) º (Sum = Âk=1i-1 k) Ÿ (i = 101)
	= (Sum = Âk=1100 k) = (Sum = 5050).
	101 - i is the nonnegative decreasing functon
	loop terminate

