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 Chap. 9 Undecidab
9.1 A Language that is Not recursively enumer
9.1.2 Code for Turing Machine
TM M = (Q, {0, 1}, , , q1, B, {q2})  binary s

Q = {q1, q2, …, qr} r  NN.
 = {X1, X2, …, Xs} X1 = 0, X2 = 1, X3 =
L = D1, R = D2. 2   NN.
(qi, Xj) = (qk, Xl, Dm) i, j, k, l, m  NN

 0i10j10k10l10m

  111211 … 11n.

(M, w)  code(M)111code(w)  {0, 1}*

 number of Turing machines is countable.
We can enumerate TM Mi for i  NN.
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Diagonalization Language: Ld.

Since both of TM’s and strings in *are cou
we can consider (Mi, wi) pair for i  NN

Consider Ld = {wi  *| wi  L(Mi)}

Theorem 9.2 Ld is not recursively enumerable.
proof Suppose Ld = L(M) for some TM M.
Since M is a TM, i  NN . M = Mi.

If wi  Ld, wi  Ld by definition of Ld.  M
If wi  Ld, wi  Ld by definition of Ld.  M

Contradiction!  M does not exist.
 Ld is not recursively enumerable.   Cant

TM’s are countable whereas languages are unc
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The halting problem
program halt(P: program, I: input)

if P(I) will stop then print “halts”
      else print “loops forev

Assume the program halt exists and consider a p
program H(P: program)

if halt(P, P) = “halts” then loops fore
                 else stop fi

Consider H(H)
if H(H) loops forever  halt(H, H) prints “

 But H(H) must stop(definiton of H
if H(H) stop  halt(H, H) prints “no stop”

 But H(H) must loops forever(defini
 Contradiction! halt does not exist.
 halting problem does not exist.
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Languages(sets) that is not RE(no TM, no progr
Ld = {wi  *| wi  L(Mi)}
halting problem
power set of integer is uncountable

Cantor’s diagonal arguments
Russel’s paradox

S = {x| x  x} x  x, iff x  x. Bu
Some similar examples in the world

A barber who shave everybody who can not
Shall the barber shave himself?

An adjective is heterological, if the adjectiv
the property it describes.(monos

Is the adjective “heterological” hetero
There is a sign that “It is written by me(liar)

Self contradiction denial of self recurs
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9.2 An undecidable problem that is RE
Recursive languages

If w  L, M halts and accepts.
If w  L, M halts and does not accepts.

subclass of RE languages
type 1 in Chomsky’s hieratchy

Recursivly enumerable languages(RE language
If w  L, M halts and accepts.
If w  L, M halts and does not accepts or lo

Problem P is called decidable, if P is recursive
Problem P is called undecidable, if P is not recu

P may be RE or non-RE
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Three classes of languages(problems)
recursive decidable co
RE but not recur. undecidable co
not RE undecidable un

Recursive Decidable(algorithm
total (recursive) fun

Recursive enumerable Turing computable
partial recursive fun
programmable(com

recursive

RE but not recursive
Not RE
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Languages and problems
L: *  {0, 1} P: NN  {0, 1}

Both of languages and problems are uncountabl
But TM(program) are countable.

There are problems(languages) that is not recurs
halting problem
Russel’s paradox
Diagonalization languages(Ld)

complement of Ld Ld = {wi  *|
universal language in 
RE(but not recursive)
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Complement of recursive and recursively enum
Theorem 9.3 If L is recursive, L is also recursiv
proof Let L = L(M) for some TM M that always 

Consider M
accept and halt  not accept and hal
not accept and halt  accept and hal

M . L = L(M) and always hal

More detail
M = (Q, {0, 1}, , , q1, B, {q2}) no
M = (Q  {f}, {0, 1}, , , q1, B, {f})

 =   {(q, X) = (f, X, S)| q  Q}
no transition in M  transition

Read “Why ‘Recursive’?” in page 385
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Theorem 9.4 If both of L and L are RE, L is recu
proof Let L = L(M1) and L = L(M2).
Consider a two tape TM M.

tape 1 simulates the tape of M1 and tape 2 s
states and state transitions of M simulates M

If x  L  M1 accept and halt  M accept x an
If x  L  M2 accept and halt  M not accept x

 L is recursive.
Only three case for the complement of language
     Thm 9.3: If L is recursive, L is recursive and 
     Thm 9.4: L and L are not both RE and not rec
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Universal language: Lu: complement of Ld.

Lu = {wi  *| wi  L(Mi)} =  Ld.

Theorem 9.6 Lu is RE but not recursive.
proof Let U, universal TM, be a multi tape TM s

tape 1: (Mi, wi)
tape 2: simulate the tape of Mi.

If Mi accept wi, U accept Mi.
 Lu is RE.(simplified version of  9.2.3)

Since Ld is not RE.
 Lu is not recursive.(Three cases for the c

 Lu is RE but not recursive.
    Ld = Lu is not RE.(the fifth case in the diagram
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9.3 Undecidable Problems About Turing Mach
P is a decision problem on the domain D, if d 

P: D  {yes, no}
YP, NP   D is called yes(no) instances of P

YP = {d  D| P(d) = yes}
NP = {d  D| P(d) = no}, respectively

A problem P is decidable,
if there exists a decider (program, algorithm

always tells yes or no correctly.
Undecidable, otherwise.

Assume D is countable.
Then |{P(D)}| is uncountable.
But decider is countable.
 P, . P is undecidable.
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Reducing one problem to another
We say a problem P1 on D1 reduces(subset) to P

f: D1  D2, . d1  YP1
(D1), f(d1)  YP2

(
d1  NP1

(D1), f(d1)  NP

If P1 (on D1) reduces to P2 (on D2), BUT!!!
P2 is at least as hard as P1. (P1P2)
P2 is not easier than P1.

fD1 D2
Y

N
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Theorem 9.7 If there is a reduction from P1 to P
a) If P1 is undecidable, then so is P2. (If P2 
b) If P1 is non-RE, then so is P2. (If P2 is R

proof( 대우 ) a) Supccccpose P2 is decidable. Th
D2 . x  P1, f(x)  P2, D2 halts “yes”, D

   x  P1, f(x)  P2, D2 halts “no”, D
 P1 is decidable.

b) Assume P2 is RE. Then
M2 . x  P1, f(x)  P2, M2 halts “yes”, 

   x  P1, f(x)  P2, M2 halts “no” o
    M1 halts “no” or 

 P1 is RE.
If Lu reduces to P, P is not recursive. (RE or not 
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9.3.2 Turing Machine that Accepts the Empty L
Le = {M| L(M) = }
Lne = {M| L(M)  }

Theorem 9.8 Lne is recursively enumerable.
proof Consider a NTM Mne

1. Guess a TM M and an input string w
2. A TM U test if M accepts w.(U simulates 
3. If M accepts w then Mne accepts M.
 L(Mne) = Lne.

But it is not so easy to find a TM Me . L(Me) = 
Actually there is no TM Me . L(Me) = Le.
We shall prove that in Thm. 9.9 and 9.10.
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Theorem 9.9 Lne is not recursive.
proof  Reduce Lu to Lne.(LuLne)
Consider a TM Mne.

1. U simulates M for w.(guess (M, w) pair)
2. If U accepts w (w  L(M)), then code for
3. If U does not accepts w (w  L(M)), then

Transform (M, w) pair to Mne . L(Mne) = {M| w
If w  L(M), M  Lne.
If w  L(M), M  Lne.

 We Reduced Lu to Lne.
 Lne is not recursive.
Theorem 9.10 Le is not RE.
proof  Since Le = Lne and Lne is RE but not recu
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Rice’s Theorem and Properties of RE Languag
Consider a property P of a set of languages.

property of being context free is set of all C
property of being empty is {}.
P: 2

*
   {true, false}

P = {L  *| P(L)} = {L  2
*
 | P(L)}.

A property is trivial, if it is either empty or is all
nontrivial otherwise.

P =  or 2
*
  are trivial.

But P = {} is nontrivial.

P may be represented as set of TM’s, LP.
P  LP = {M  TM| L(M) = L}
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Theorem 9.11 (Rice’s Theorem) Every nontrivi
sively enumerable languages are undecidable.
Let P be a nontrivial property of RE languages.
1. Assume P() = false (or   P).

 L . P(L) = true or ML . ML  LP.
     We shall reduce Lu to LP.(LuLP)

1. U simulate w for M
2. If U accepts w, L = L(M)  ML  LP.

2.1 ML simulate for x
2.2 If ML accepts x, M accepts ML.

3. If U does not accepts w, do nothing.
2. Assume P() = true (or   P).

Consider complement property P, LP. = LP.
 P is undecidable(above).  P is undecid
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9.3.4 Problems about Turing-Machine Specific
1. Whether the language accepted by a TM is em
2. Whether the language accepted by a TM is fin
3. Whether the language accepted by a TM is reg
4. Whether the language accepted by a TM is co

Undecidable!
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Problem is a language
language  problem

Not R.E. Not computable
recursively enumerable computable
recursive decidable(alway hal

Three class of languages(problems)
1. Not recursively enumerable
    Not computable
2. Recursively enumerable but not recursive
   Computable but not decidable (undecidable)
   partial -recursive function
3. recursive
    decidable
    total -recursive function
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Turing Church’s Thesis
Turing machine

Turing(1930)
-recursive function(partial recursive) func

Gödel(1934; lecture at Princeton), He
-calculus

Church(1933-41), Kleene(1935), Ross
Equivalence of -recursive function and -c

Church(1936) attributes to Kleene
Equivalence of TM, -recursive function, an

Turing(1937)
Turing-Church’s Thesis
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Post(1936)
Chomsky(1959)
Meyer, Ritchie(1967)
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Following systems are equivalent
Turing machine
-recursive function(partial recursive) func
-calculus
combinatory logic Schönfin
Post correspondence system
type 0 grammar
while programs

Turing-Church’s thesis still works
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