Chap. 9 Undecidability

9.1 A Language that is Not recursively enumerable 9.1.2 Code for Turing Machine TM $M = (Q, \{0, 1\}, \Gamma, \delta, q_1, B, \{q_2\}) \leftrightarrow binary string(integer)$ $Q = \{q_1, q_2, \dots, q_r\}$ $r \in \mathbb{N}$. $\Gamma = \{X_1, X_2, \dots, X_s\}$ $X_1 = 0, X_2 = 1, X_3 = B$ $s \in \mathbb{N}$. $L = D_1, R = D_2. \qquad 2 \in \mathbb{N}.$ $\delta(q_i, X_i) = (q_k, X_l, D_m) \qquad i, j, k, l, m \in \mathbb{N}.$ $\leftrightarrow 0^i 10^j 10^k 10^l 10^m$ $\delta \leftrightarrow \delta_1 l l \delta_2 l l \dots l l \delta_n$

 $(M, w) \leftrightarrow code(M)$ 111code $(w) \in \{0, 1\}^*$ binary string \therefore number of Turing machines is **countable**. We can **enumerate** TM M_i for $i \in \mathbb{N}$.

Diagonalization Language: L_d.

Since both of TM's and strings in Σ^* are countable, we can consider (M_i, w_i) pair for $i \in \mathbb{N}$. Consider $L_d = \{w_i \in \Sigma^* | w_i \notin L(M_i)\}$

Theorem 9.2 L_d is not recursively enumerable.Figure 9.1proof Suppose $L_d = L(M)$ for some TM M.Since M is a TM, $\exists i \in \mathbb{N}$.>. $M = M_i$.If $w_i \in L_d$, $w_i \notin L_d$ by definition of L_d . \therefore M does not accept w_i .If $w_i \notin L_d$, $w_i \in L_d$ by definition of L_d . \therefore M accepts w_i .Contradiction! \therefore M does not exist. \therefore L_d is not recursively enumerable.Cantor's diagonal argumentTM's are countable whereas languages are uncountable!

The halting problem program halt(P: program, I: input) if P(I) will stop then print "halts" else print "loops forever" fi Assume the program halt exists and consider a program H program H(P: program) if halt(P, P) = "halts" then loops forever else stop fi Consider H(H)if H(H) loops forever \Rightarrow halt(H, H) prints "stop" \Rightarrow But H(H) must stop(**definiton** of H). if H(H) stop \Rightarrow halt(H, H) prints "**no stop**" \Rightarrow But H(H) must loops forever(**definiton** of H). :. Contradiction! halt does **not** exist. :. halting problem does not exist.

Languages(sets) that is not RE(no TM, no program)

 $L_d = \{ w_i \in \Sigma^* | w_i \notin L(M_i) \}$ halting problem power set of integer is **uncountable** Cantor's diagonal arguments Russel's paradox $S = \{x \mid x \notin x\}$ $x \in x, iff x \notin x$. But $S \in S, iff S \notin S!$ Some similar examples in the world A barber who shave everybody who can **not** shave himself. Shall the barber shave himself? An adjective is heterological, if the adjective does not posess the property it describes.(monosyllabic, polysyllabic) Is the adjective "heterological" heterological? There is a sign that "It is written by me(liar)".Did you(liar) write it? Self contradiction denial of self recursion!

9.2 An undecidable problem that is RE Recursive languages

If $w \in L$, *M* halts and accepts. *If* $w \notin L$, *M* halts and does not accepts.

subclass of RE languages type 1 in Chomsky's hieratchy

Recursivly enumerable languages(RE languages) If $w \in L$, M halts and accepts. If $w \notin L$, M halts and does not accepts or loops forever.

Problem P is called **decidable**, if P is **recursive** Problem P is called **undecidable**, if P is **not** recursive P may be RE **or** non-RE

Three classes of languages(problems)

recursive RE but *not recur. not RE* decidable undecidable undecidable

countable countable uncountable

Not RE RE but not recursive

recursive

Recursive

Recursive enumerable

Decidable(algorithm) total (recursive) function Turing computable partial recursive function programmable(computable)

Languages and problems

L: $\Sigma^* \to \{0, 1\}$ *P*: $\mathbb{N} \to \{0, 1\}$ Both of languages and problems are **uncountable**. But *TM*(program) are **countable**.

There are problems(languages) that is **not** recursively enumerable. halting problem Russel's paradox Diagonalization languages(L_d) **complement** of L_d $\overline{L}_{\overline{d}} = \{w_i \in \Sigma^* | w_i \in L(M_i)\} = L_u$ universal language in RE(but **not recursive**)

11/22/16

CS322

Complement of recursive and recursively enumerable languages Theorem 9.3 If L is recursive, \overline{L} is also recursive. proof Let L = L(M) for some TM M that always halts. Consider \overline{M}

> accept and halt \rightarrow not accept and halt. not accept and halt \rightarrow accept and halt. $\exists \overline{M} . \exists \overline{L} = L(\overline{M})$ and always halts.

More detail $M = (Q, \{0, 1\}, \Gamma, \delta, q_1, B, \{q_2\})$ no transition from F $\overline{M} = (Q \cup \{f\}, \{0, 1\}, \Gamma, \overline{\delta}, q_1, B, \{f\})$ $\overline{\delta} = \delta \cup \{\delta(q, X) = (f, X, S) / q \in Q\}$ no transition in $M \rightarrow$ transition to f

Theorem 9.4 If both of L and \overline{L} are RE, L is **recursive**(so is \overline{L}). **proof** Let $L = L(M_1)$ and $\overline{L} = L(M_2)$.

Consider a two tape TM M.

tape 1 simulates the tape of M_1 and tape 2 simulates the tape of M_2 . states and state transitions of M simulates M_1 and M_2 in **parallel**. If $x \in L \to M_1$ accept and halt $\to M$ accept x and **halt**. If $x \notin L \to M_2$ accept and halt $\to M$ not accept x and **halt**.

:. L is recursive.

Only three case for the complement of language (among $6(_{3}P_{3})$ cases) Thm 9.3: If L is recursive, \overline{L} is recursive and vice versa. Thm 9.4: L and \overline{L} are not both RE and not recursive.

Universal language: L_u : complement of L_d . $L_u = \{w_i \in \Sigma^* | w_i \in L(M_i)\} = \overline{L}_d$.

Theorem 9.6 L_u is RE but not recursive. **proof** Let U, **universal TM**, be a multi tape TM such that $L(U) = L_u$. tape 1: (M_i, w_i)

tape 2: simulate the tape of M_i .

If M_i accept w_i , U accept M_i .

:. L_u is **RE**.(simplified version of 9.2.3) Since L_d is **not** RE.

 \therefore L_u is **not recursive**.(Three cases for the complement)

 $\therefore L_u$ is *RE* but **not** recursive.

 $L_d = \overline{L}_u$ is not RE.(the fifth case in the diagram of TP p9)

9.3 Undecidable Problems About Turing Machines *P* is a decision problem on the domain *D*, if $\forall d \in D$, P(d) is yes or no. $P: D \rightarrow \{yes, no\}$ $Y_P N_P \subseteq D$ is called yes(no) instances of P, if $Y_P = \{d \in D \mid P(d) = yes\}$ $N_P = \{d \in D | P(d) = no\}, respectively.$ A problem P is decidable, if there exists a decider (program, algorithm, TM) that <u>always</u> tells yes or no correctly. **Undecidable**, otherwise. Assume D is countable. Then $|\{P(D)\}|$ is uncountable.

But decider is countable.

 $\therefore \exists P, ... P is undecidable.$

Reducing one problem to another We say a problem P_1 on D_1 reduces(subset) to P_2 on D_2 , if $\exists f: D_1 \rightarrow D_2$, $\exists f: Q_1 \rightarrow Q_2$, $\forall f: Q_1 \rightarrow Q_2$, $\forall f: Q_1 \rightarrow Q_2$, $\exists f: Q_1 \rightarrow Q_2$, $\forall f: Q_1 \rightarrow Q_2$, $\exists f: Q_1 \rightarrow Q_2$, $\forall f: Q_1 \rightarrow Q_2$, $\exists f: Q_1 \rightarrow Q_2$, $\exists f: Q_1 \rightarrow Q_2$, $\exists f: Q_1 \rightarrow Q_2$, $\forall f: Q_2 \rightarrow Q_2$, $\forall f: Q_1 \rightarrow Q_2$, $\forall f: Q_2 \rightarrow Q_2$, $\forall f: Q_1 \rightarrow Q_2$, $\forall f: Q_2 \rightarrow Q_2$

If P_1 (on D_1) reduces to P_2 (on D_2), BUT!!! P_2 is at least as hard as P_1 . ($P_1 \le P_2$) (ⁱsubset) P_2 is not easier than P_1 .

Theorem 9.7 If there is a reduction from P_1 to $P_2(P_1 \leq P_2)$, then: a) If P_1 is undecidable, then so is P_2 . (If P_2 is decidable, so is P_1 .) b) If P_1 is non-RE, then so is P_2 . (If P_2 is RE, so is P_1 .) **proof**(대우) a) Supceepose P_2 is **decidable**. Then $\exists D_2 : \exists D_2 : \exists X \in P_1, f(x) \in P_2, D_2 halts "yes", D_1 halts "yes".$ $\forall x \notin P_1, f(x) \notin P_2, D_2 \text{ halts "no", } D_1 \text{ halts "no".}$ \therefore P_1 is decidable. b) Assume P_2 is **RE**. Then $\exists M_2 : \exists M_2 : \exists X \in P_1, f(x) \in P_2, M_2 \text{ halts "yes", } M_1 \text{ halts "yes".}$ $\forall x \notin P_1, f(x) \notin P_2, M_2 \text{ halts "no" or loops forever,}$ M_1 halts "no" or loops forever. $\therefore P_1$ is **RE**.

If L_u reduces to P, P is **not** recursive. (RE or **not** RE)

9.3.2 Turing Machine that Accepts the Empty Language

 $L_e = \{M | L(M) = \emptyset\}$ $L_{ne} = \{M | L(M) \neq \emptyset\}$

Theorem 9.8 L_{ne} is recursively enumerable.

proof Consider a NTM M_{ne}

Guess a TM M and an input string w
 A TM U test if M accepts w.(U simulates M for w)
 If M accepts w then M_{ne} accepts M.

 $\therefore L(M_{ne}) = L_{ne}.$

But it is not so easy to find a TM M_e . \exists . $L(M_e) = L_e$. Actually there is no TM M_e . \exists . $L(M_e) = L_e$. We shall prove that in Thm. 9.9 and 9.10. **Theorem 9.9** L_{ne} is not recursive. proof Reduce L_u to $L_{ne}.(L_u \le L_{ne})$ Consider a TM M_{ne} .

1. U simulates M for w.(guess (M, w) pair)

2. If U accepts $w (w \in L(M))$, then code for $M \in L_{ne}$.

3. If U does not accepts $w (w \notin L(M))$, then code for $M \notin L_{ne}$.

Transform (*M*, *w*) *pair to* M_{ne} .*Э.* $L(M_{ne}) = \{M | w \in L(M)\}$

If $w \in L(M)$, $M \in L_{ne}$.

If $w \notin L(M)$, $M \notin L_{ne}$.

 \therefore We Reduced L_u to L_{ne} .

 \therefore L_{ne} is not recursive.

Theorem 9.10 L_{ρ} is not RE.

proof Since $L_e = \overline{L}_{ne}$ and L_{ne} is RE but not recursive. Case 2 of p7.

Rice's Theorem and Properties of RE Languages

Consider a **property**
$$P$$
 of a set of languages.
property of being **context free** is set of all CFL's.
property of being **empty** is $\{\emptyset\}$.
 $P: 2^{\Sigma^*} \rightarrow \{true, false\}$

$$P = \{L \subseteq \Sigma^* / P(L)\} = \{L \in 2^{\Sigma^*} / P(L)\}.$$

A *property* is *trivial*, if it is either *empty* or is *all* of the languages. *nontrivial* otherwise.

> $P = \emptyset \text{ or } 2^{\Sigma^*} \text{ are trivial.}$ But $P = \{\emptyset\}$ is nontrivial.

P may be represented as set of *TM*'s, L_P $P \leftrightarrow L_P = \{M \in TM | L(M) = L\}$

Theorem 9.11 (Rice's Theorem) Every **nontrivial** property of the **recur**sively enumerable languages are undecidable. Let P be a **nontrivial** property of RE languages. 1. Assume $P(\emptyset) = false (or \emptyset \notin P)$. $\therefore \exists L . \mathfrak{d}. P(L) = true \ or \ \exists M_L . \mathfrak{d}. M_L \in L_P$ We shall **reduce** L_{μ} to $L_{P}(L_{\mu} \leq L_{P})$ 1. U simulate w for M 2. If U accepts w, $L = L(M) \leftrightarrow \exists M_L \in L_P$ 2.1 M_I simulate for x 2.2 If M_L accepts x, M accepts M_L . 3. If U does not accepts w, do nothing. 2. Assume $P(\emptyset) = true \ (or \ \emptyset \in P)$. Consider complement property $P, L_{\overline{P}} = \overline{L}_{P}$:. *P* is undecidable(above). :. *P* is undecidable.(*Thm* 9.3)

9.3.4 Problems about Turing-Machine Specifications

1. Whether the language accepted by a TM is $empty(L_e, L_{ne})$.

- 2. Whether the language accepted by a TM is finite.
- 3. Whether the language accepted by a TM is regular.
- 4. Whether the language accepted by a TM is context-free.

Undecidable!

Problem is a language language Not R.E.

CS322

Not R.E. recursively enumerable recursive problem Not computable computable decidable(alway halt)

function

partial function (total) function

Three class of languages(problems)
1. Not recursively enumerable Not computable
2. Recursively enumerable but not recursive Computable but **not** decidable (**undecidable**) partial μ-recursive function
3. recursive

3. recursive decidable

total μ -recursive function

Turing Church's Thesis *Turing machine Turing*(1930) μ -recursive function(partial recursive) function Gödel(1934; lecture at Princeton), Herbrand, Kleene(1936) λ -calculus Church(1933-41), Kleene(1935), Rosser(1935) *Equivalence of* μ *-recursive function and* λ *-calculus Church*(1936) *attributes to Kleene* Equivalence of TM, μ -recursive function, and λ -calculus *Turing*(1937) **Turing-Church's Thesis**

Following systems are equivalentTuring machineTuring(1930) μ -recursive function(partial recursive) functionGödel(1934) λ -calculusChurch(1933-41)combinatory logicSchönfinkel(1924), Curry(1929)Post correspondence systemPost(1936)type 0 grammarChomsky(1959)while programsMeyer, Ritchie(1967)

Turing-Church's thesis still works