
CS322 9. Undecidability

1

ility
able

tring(integer)

 B s NN.

.

binary string
11/22/16 Kwang-Moo Choe

 Chap. 9 Undecidab
9.1 A Language that is Not recursively enumer
9.1.2 Code for Turing Machine
TM M = (Q, {0, 1}, , , q1, B, {q2}) binary s

Q = {q1, q2, …, qr} r NN.
 = {X1, X2, …, Xs} X1 = 0, X2 = 1, X3 =
L = D1, R = D2. 2 NN.
(qi, Xj) = (qk, Xl, Dm) i, j, k, l, m NN

 0i10j10k10l10m

 111211 … 11n.

(M, w) code(M)111code(w) {0, 1}*

 number of Turing machines is countable.
We can enumerate TM Mi for i NN.

CS322 9. Undecidability

2

ntable,
.

Figure 9.1

 does not accept wi.
 accepts wi.

or’s diagonal argument
ountable!
11/22/16 Kwang-Moo Choe

Diagonalization Language: Ld.

Since both of TM’s and strings in *are cou
we can consider (Mi, wi) pair for i NN

Consider Ld = {wi *| wi L(Mi)}

Theorem 9.2 Ld is not recursively enumerable.
proof Suppose Ld = L(M) for some TM M.
Since M is a TM, i NN . M = Mi.

If wi Ld, wi Ld by definition of Ld. M
If wi Ld, wi Ld by definition of Ld. M

Contradiction! M does not exist.
 Ld is not recursively enumerable. Cant

TM’s are countable whereas languages are unc

CS322 9. Undecidability

3

er” fi
rogram H

ver

stop”
).

ton of H).
11/22/16 Kwang-Moo Choe

The halting problem
program halt(P: program, I: input)

if P(I) will stop then print “halts”
 else print “loops forev

Assume the program halt exists and consider a p
program H(P: program)

if halt(P, P) = “halts” then loops fore
 else stop fi

Consider H(H)
if H(H) loops forever halt(H, H) prints “

 But H(H) must stop(definiton of H
if H(H) stop halt(H, H) prints “no stop”

 But H(H) must loops forever(defini
 Contradiction! halt does not exist.
 halting problem does not exist.

CS322 9. Undecidability

4

am)

t S S, iff S S!

 shave himself.

e does not posess
yllabic, polysyllabic)
logical?
”.Did you(liar) write it?
ion!
11/22/16 Kwang-Moo Choe

Languages(sets) that is not RE(no TM, no progr
Ld = {wi *| wi L(Mi)}
halting problem
power set of integer is uncountable

Cantor’s diagonal arguments
Russel’s paradox

S = {x| x x} x x, iff x x. Bu
Some similar examples in the world

A barber who shave everybody who can not
Shall the barber shave himself?

An adjective is heterological, if the adjectiv
the property it describes.(monos

Is the adjective “heterological” hetero
There is a sign that “It is written by me(liar)

Self contradiction denial of self recurs

CS322 9. Undecidability

5

s)

ops forever.

rsive
11/22/16 Kwang-Moo Choe

9.2 An undecidable problem that is RE
Recursive languages

If w L, M halts and accepts.
If w L, M halts and does not accepts.

subclass of RE languages
type 1 in Chomsky’s hieratchy

Recursivly enumerable languages(RE language
If w L, M halts and accepts.
If w L, M halts and does not accepts or lo

Problem P is called decidable, if P is recursive
Problem P is called undecidable, if P is not recu

P may be RE or non-RE

CS322 9. Undecidability

6

untable
untable
countable

)
ction

ction
putable)
11/22/16 Kwang-Moo Choe

Three classes of languages(problems)
recursive decidable co
RE but not recur. undecidable co
not RE undecidable un

Recursive Decidable(algorithm
total (recursive) fun

Recursive enumerable Turing computable
partial recursive fun
programmable(com

recursive

RE but not recursive
Not RE

CS322 9. Undecidability

7

e.

ively enumerable.

 wi L(Mi)} = Lu
11/22/16 Kwang-Moo Choe

Languages and problems
L: * {0, 1} P: NN {0, 1}

Both of languages and problems are uncountabl
But TM(program) are countable.

There are problems(languages) that is not recurs
halting problem
Russel’s paradox
Diagonalization languages(Ld)

complement of Ld Ld = {wi *|
universal language in
RE(but not recursive)

CS322 9. Undecidability

8

erable languages
e.
halts.

t.
t.
ts.

 transition from F

 to f
11/22/16 Kwang-Moo Choe

Complement of recursive and recursively enum
Theorem 9.3 If L is recursive, L is also recursiv
proof Let L = L(M) for some TM M that always

Consider M
accept and halt not accept and hal
not accept and halt accept and hal

M . L = L(M) and always hal

More detail
M = (Q, {0, 1}, , , q1, B, {q2}) no
M = (Q {f}, {0, 1}, , , q1, B, {f})

 = {(q, X) = (f, X, S)| q Q}
no transition in M transition

Read “Why ‘Recursive’?” in page 385

CS322 9. Undecidability

9

rsive(so is L).

imulates the tape of M2.

1 and M2 in parallel.
d halt.
 and halt.

 (among 6(3P3) cases)
vice versa.
ursive.
11/22/16 Kwang-Moo Choe

Theorem 9.4 If both of L and L are RE, L is recu
proof Let L = L(M1) and L = L(M2).
Consider a two tape TM M.

tape 1 simulates the tape of M1 and tape 2 s
states and state transitions of M simulates M

If x L M1 accept and halt M accept x an
If x L M2 accept and halt M not accept x

 L is recursive.
Only three case for the complement of language
 Thm 9.3: If L is recursive, L is recursive and
 Thm 9.4: L and L are not both RE and not rec

CS322 9. Undecidability

10

uch that L(U) = Lu.

omplement)

 of TP p9)
11/22/16 Kwang-Moo Choe

Universal language: Lu: complement of Ld.

Lu = {wi *| wi L(Mi)} = Ld.

Theorem 9.6 Lu is RE but not recursive.
proof Let U, universal TM, be a multi tape TM s

tape 1: (Mi, wi)
tape 2: simulate the tape of Mi.

If Mi accept wi, U accept Mi.
 Lu is RE.(simplified version of 9.2.3)

Since Ld is not RE.
 Lu is not recursive.(Three cases for the c

 Lu is RE but not recursive.
 Ld = Lu is not RE.(the fifth case in the diagram

CS322 9. Undecidability

11

ines
 D, P(d) is yes or no.

, if

.

, TM) that
11/22/16 Kwang-Moo Choe

9.3 Undecidable Problems About Turing Mach
P is a decision problem on the domain D, if d

P: D {yes, no}
YP, NP D is called yes(no) instances of P

YP = {d D| P(d) = yes}
NP = {d D| P(d) = no}, respectively

A problem P is decidable,
if there exists a decider (program, algorithm

always tells yes or no correctly.
Undecidable, otherwise.

Assume D is countable.
Then |{P(D)}| is uncountable.
But decider is countable.
 P, . P is undecidable.

CS322 9. Undecidability

12

2 on D2, if
D2)

2
(D2)

(¿subset)
11/22/16 Kwang-Moo Choe

Reducing one problem to another
We say a problem P1 on D1 reduces(subset) to P

f: D1 D2, . d1 YP1
(D1), f(d1) YP2

(
d1 NP1

(D1), f(d1) NP

If P1 (on D1) reduces to P2 (on D2), BUT!!!
P2 is at least as hard as P1. (P1P2)
P2 is not easier than P1.

fD1 D2
Y

N

CS322 9. Undecidability

13

2(P1P2), then:
is decidable, so is P1.)
E, so is P1.)
en

1 halts “yes”.

1 halts “no”.

M1 halts “yes”.
r loops forever,
loops forever.

RE)
11/22/16 Kwang-Moo Choe

Theorem 9.7 If there is a reduction from P1 to P
a) If P1 is undecidable, then so is P2. (If P2
b) If P1 is non-RE, then so is P2. (If P2 is R

proof(대우) a) Supccccpose P2 is decidable. Th
D2 . x P1, f(x) P2, D2 halts “yes”, D

 x P1, f(x) P2, D2 halts “no”, D
 P1 is decidable.

b) Assume P2 is RE. Then
M2 . x P1, f(x) P2, M2 halts “yes”,

 x P1, f(x) P2, M2 halts “no” o
 M1 halts “no” or

 P1 is RE.
If Lu reduces to P, P is not recursive. (RE or not

CS322 9. Undecidability

14

anguage

M for w)

Le.
11/22/16 Kwang-Moo Choe

9.3.2 Turing Machine that Accepts the Empty L
Le = {M| L(M) = }
Lne = {M| L(M) }

Theorem 9.8 Lne is recursively enumerable.
proof Consider a NTM Mne

1. Guess a TM M and an input string w
2. A TM U test if M accepts w.(U simulates
3. If M accepts w then Mne accepts M.
 L(Mne) = Lne.

But it is not so easy to find a TM Me . L(Me) =
Actually there is no TM Me . L(Me) = Le.
We shall prove that in Thm. 9.9 and 9.10.

CS322 9. Undecidability

15

 M Lne.
 code for M Lne.
 L(M)}

rsive. Case 2 of p7.
11/22/16 Kwang-Moo Choe

Theorem 9.9 Lne is not recursive.
proof Reduce Lu to Lne.(LuLne)
Consider a TM Mne.

1. U simulates M for w.(guess (M, w) pair)
2. If U accepts w (w L(M)), then code for
3. If U does not accepts w (w L(M)), then

Transform (M, w) pair to Mne . L(Mne) = {M| w
If w L(M), M Lne.
If w L(M), M Lne.

 We Reduced Lu to Lne.
 Lne is not recursive.
Theorem 9.10 Le is not RE.
proof Since Le = Lne and Lne is RE but not recu

CS322 9. Undecidability

16

es

FL’s.

 of the languages.
11/22/16 Kwang-Moo Choe

Rice’s Theorem and Properties of RE Languag
Consider a property P of a set of languages.

property of being context free is set of all C
property of being empty is {}.
P: 2

*
 {true, false}

P = {L *| P(L)} = {L 2
*
 | P(L)}.

A property is trivial, if it is either empty or is all
nontrivial otherwise.

P = or 2
*
 are trivial.

But P = {} is nontrivial.

P may be represented as set of TM’s, LP.
P LP = {M TM| L(M) = L}

CS322 9. Undecidability

17

al property of the recur-

able.(Thm 9.3)
11/22/16 Kwang-Moo Choe

Theorem 9.11 (Rice’s Theorem) Every nontrivi
sively enumerable languages are undecidable.
Let P be a nontrivial property of RE languages.
1. Assume P() = false (or P).

 L . P(L) = true or ML . ML LP.
 We shall reduce Lu to LP.(LuLP)

1. U simulate w for M
2. If U accepts w, L = L(M) ML LP.

2.1 ML simulate for x
2.2 If ML accepts x, M accepts ML.

3. If U does not accepts w, do nothing.
2. Assume P() = true (or P).

Consider complement property P, LP. = LP.
 P is undecidable(above). P is undecid

CS322 9. Undecidability

18

ations
pty(Le, Lne).
ite.
ular.

ntext-free.
11/22/16 Kwang-Moo Choe

9.3.4 Problems about Turing-Machine Specific
1. Whether the language accepted by a TM is em
2. Whether the language accepted by a TM is fin
3. Whether the language accepted by a TM is reg
4. Whether the language accepted by a TM is co

Undecidable!

CS322 9. Undecidability

19

function

partial function
t) (total) function
11/22/16 Kwang-Moo Choe

Problem is a language
language problem

Not R.E. Not computable
recursively enumerable computable
recursive decidable(alway hal

Three class of languages(problems)
1. Not recursively enumerable
 Not computable
2. Recursively enumerable but not recursive
 Computable but not decidable (undecidable)
 partial -recursive function
3. recursive
 decidable
 total -recursive function

CS322 9. Undecidability

20

tion
rbrand, Kleene(1936)

er(1935)
alculus

d -calculus
11/22/16 Kwang-Moo Choe

Turing Church’s Thesis
Turing machine

Turing(1930)
-recursive function(partial recursive) func

Gödel(1934; lecture at Princeton), He
-calculus

Church(1933-41), Kleene(1935), Ross
Equivalence of -recursive function and -c

Church(1936) attributes to Kleene
Equivalence of TM, -recursive function, an

Turing(1937)
Turing-Church’s Thesis

CS322 9. Undecidability

21

Turing(1930)
tion Gödel(1934)

Church(1933-41)
kel(1924), Curry(1929)

Post(1936)
Chomsky(1959)
Meyer, Ritchie(1967)
11/22/16 Kwang-Moo Choe

Following systems are equivalent
Turing machine
-recursive function(partial recursive) func
-calculus
combinatory logic Schönfin
Post correspondence system
type 0 grammar
while programs

Turing-Church’s thesis still works

	Chap. 9 Undecidability
	9.1 A Language that is Not recursively enumerable
	9.1.2 Code for Turing Machine
	TM M = (Q, {0, 1}, G, d, q1, B, {q2}) ´ binary string(integer)
	Q = {q1, q2, …, qr} r Œ NN.
	G = {X1, X2, …, Xs} X1 = 0, X2 = 1, X3 = B s Œ NN.
	L = D1, R = D2. 2 Œ NN.
	d(qi, Xj) = (qk, Xl, Dm) i, j, k, l, m Œ NN.
	´ 0i10j10k10l10m
	d ´ d111d211 … 11dn.
	(M, w) ´ code(M)111code(w) Œ {0, 1}* binary string
	\ number of Turing machines is countable.
	We can enumerate TM Mi for i Œ NN.
	Diagonalization Language: Ld.
	Since both of TM’s and strings in S* are countable,
	we can consider (Mi, wi) pair for i Œ NN.
	Consider Ld = {wi Œ S*| wi œ L(Mi)}
	Theorem 9.2 Ld is not recursively enumerable. Figure 9.1
	proof Suppose Ld = L(M) for some TM M.
	Since M is a TM, $i Œ NN .'. M = Mi.
	If wi Œ Ld, wi œ Ld by definition of Ld. \ M does not accept wi.
	If wi œ Ld, wi Œ Ld by definition of Ld. \ M accepts wi.
	Contradiction! \ M does not exist.
	\ Ld is not recursively enumerable. Cantor’s diagonal argument
	TM’s are countable whereas languages are uncountable!
	The halting problem
	program halt(P: program, I: input)
	if P(I) will stop then print “halts”
	else print “loops forever” fi
	Assume the program halt exists and consider a program H
	program H(P: program)
	if halt(P, P) = “halts” then loops forever
	else stop fi
	Consider H(H)
	if H(H) loops forever ﬁ halt(H, H) prints “stop”
	ﬁ But H(H) must stop(definiton of H).
	if H(H) stop ﬁ halt(H, H) prints “no stop”
	ﬁ But H(H) must loops forever(definiton of H).
	\ Contradiction! halt does not exist.
	\ halting problem does not exist.
	Languages(sets) that is not RE(no TM, no program)
	Ld = {wi Œ S*| wi œ L(Mi)}
	halting problem
	power set of integer is uncountable
	Cantor’s diagonal arguments
	Russel’s paradox
	S = {x| x œ x} x Œ x, iff x œ x. But S Œ S, iff S œ S!
	Some similar examples in the world
	A barber who shave everybody who can not shave himself.
	Shall the barber shave himself?
	An adjective is heterological, if the adjective does not posess
	the property it describes.(monosyllabic, polysyllabic)
	Is the adjective “heterological” heterological?
	There is a sign that “It is written by me(liar)”.Did you(liar) write it?
	Self contradiction denial of self recursion!
	9.2 An undecidable problem that is RE
	Recursive languages
	If w Œ L, M halts and accepts.
	If w œ L, M halts and does not accepts.
	subclass of RE languages
	type 1 in Chomsky’s hieratchy
	Recursivly enumerable languages(RE languages)
	If w Œ L, M halts and accepts.
	If w œ L, M halts and does not accepts or loops forever.
	Problem P is called decidable, if P is recursive
	Problem P is called undecidable, if P is not recursive
	P may be RE or non-RE
	Three classes of languages(problems)
	recursive decidable countable
	RE but not recur. undecidable countable
	not RE undecidable uncountable
	Recursive Decidable(algorithm)
	total (recursive) function
	Recursive enumerable Turing computable
	partial recursive function
	programmable(computable)
	Languages and problems
	L: S* Æ {0, 1} P: NN Æ {0, 1}
	Both of languages and problems are uncountable.
	But TM(program) are countable.
	There are problems(languages) that is not recursively enumerable.
	halting problem
	Russel’s paradox
	Diagonalization languages(Ld)
	complement of Ld Ld = {wi Œ S*| wi Œ L(Mi)} = Lu
	universal language in
	RE(but not recursive)
	Complement of recursive and recursively enumerable languages
	Theorem 9.3 If L is recursive, L is also recursive.
	proof Let L = L(M) for some TM M that always halts.
	Consider M
	accept and halt Æ not accept and halt.
	not accept and halt Æ accept and halt.
	$M .'. L = L(M) and always halts.
	More detail
	M = (Q, {0, 1}, G, d, q1, B, {q2}) no transition from F
	M = (Q » {f}, {0, 1}, G, d, q1, B, {f})
	d = d » {d(q, X) = (f, X, S)| q Œ Q}
	no transition in M Æ transition to f
	Read “Why ‘Recursive’?” in page 385
	Theorem 9.4 If both of L and L are RE, L is recursive(so is L).
	proof Let L = L(M1) and L = L(M2).
	Consider a two tape TM M.
	tape 1 simulates the tape of M1 and tape 2 simulates the tape of M2.
	states and state transitions of M simulates M1 and M2 in parallel.
	If x Œ L Æ M1 accept and halt Æ M accept x and halt.
	If x œ L Æ M2 accept and halt Æ M not accept x and halt.
	\ L is recursive.
	Only three case for the complement of language (among 6(3P3) cases)
	Thm 9.3: If L is recursive, L is recursive and vice versa.
	Thm 9.4: L and L are not both RE and not recursive.
	Universal language: Lu: complement of Ld.
	Lu = {wi Œ S*| wi Œ L(Mi)} = Ld.
	Theorem 9.6 Lu is RE but not recursive.
	proof Let U, universal TM, be a multi tape TM such that L(U) = Lu.
	tape 1: (Mi, wi)
	tape 2: simulate the tape of Mi.
	If Mi accept wi, U accept Mi.
	\ Lu is RE.(simplified version of 9.2.3)
	Since Ld is not RE.
	\ Lu is not recursive.(Three cases for the complement)
	\ Lu is RE but not recursive.
	Ld = Lu is not RE.(the fifth case in the diagram of TP p9)
	9.3 Undecidable Problems About Turing Machines
	P is a decision problem on the domain D, if "d Œ D, P(d) is yes or no.
	P: D Æ {yes, no}
	YP, NP Õ D is called yes(no) instances of P, if
	YP = {d Œ D| P(d) = yes}
	NP = {d Œ D| P(d) = no}, respectively.
	A problem P is decidable,
	if there exists a decider (program, algorithm, TM) that
	always tells yes or no correctly.
	Undecidable, otherwise.
	Assume D is countable.
	Then |{P(D)}| is uncountable.
	But decider is countable.
	\ $P, .'. P is undecidable.
	Reducing one problem to another
	We say a problem P1 on D1 reduces(subset) to P2 on D2, if
	$f: D1 Æ D2, .'. "d1 Œ YP1(D1), f(d1) Œ YP2(D2)
	"d1 Œ NP1(D1), f(d1) Œ NP2(D2)
	If P1 (on D1) reduces to P2 (on D2), BUT!!!
	P2 is at least as hard as P1. (P1£P2) (¿subset)
	P2 is not easier than P1.
	Theorem 9.7 If there is a reduction from P1 to P2(P1£P2), then:
	a) If P1 is undecidable, then so is P2. (If P2 is decidable, so is P1.)
	b) If P1 is non-RE, then so is P2. (If P2 is RE, so is P1.)
	proof(¥ÎøÏ) a) Supccccpose P2 is decidable. Then
	$D2 .'. "x Œ P1, f(x) Œ P2, D2 halts “yes”, D1 halts “yes”.
	"x œ P1, f(x) œ P2, D2 halts “no”, D1 halts “no”.
	\ P1 is decidable.
	b) Assume P2 is RE. Then
	$M2 .'. "x Œ P1, f(x) Œ P2, M2 halts “yes”, M1 halts “yes”.
	"x œ P1, f(x) œ P2, M2 halts “no” or loops forever,
	M1 halts “no” or loops forever.
	\ P1 is RE.
	If Lu reduces to P, P is not recursive. (RE or not RE)
	9.3.2 Turing Machine that Accepts the Empty Language
	Le = {M| L(M) = Æ}
	Lne = {M| L(M) ¹ Æ}
	Theorem 9.8 Lne is recursively enumerable.
	proof Consider a NTM Mne
	1. Guess a TM M and an input string w
	2. A TM U test if M accepts w.(U simulates M for w)
	3. If M accepts w then Mne accepts M.
	\ L(Mne) = Lne.
	But it is not so easy to find a TM Me .'. L(Me) = Le.
	Actually there is no TM Me .'. L(Me) = Le.
	We shall prove that in Thm. 9.9 and 9.10.
	Theorem 9.9 Lne is not recursive.
	proof Reduce Lu to Lne.(Lu£Lne)
	Consider a TM Mne.
	1. U simulates M for w.(guess (M, w) pair)
	2. If U accepts w (w Œ L(M)), then code for M Œ Lne.
	3. If U does not accepts w (w œ L(M)), then code for M œ Lne.
	Transform (M, w) pair to Mne .'. L(Mne) = {M| w Œ L(M)}
	If w Œ L(M), M Œ Lne.
	If w œ L(M), M œ Lne.
	\ We Reduced Lu to Lne.
	\ Lne is not recursive.
	Theorem 9.10 Le is not RE.
	proof Since Le = Lne and Lne is RE but not recursive. Case 2 of p7.
	Rice’s Theorem and Properties of RE Languages
	Consider a property P of a set of languages.
	property of being context free is set of all CFL’s.
	property of being empty is {Æ}.
	P: 2S* Æ {true, false}
	P = {L Õ S*| P(L)} = {L Œ 2S* | P(L)}.
	A property is trivial, if it is either empty or is all of the languages.
	nontrivial otherwise.
	P = Æ or 2S* are trivial.
	But P = {Æ} is nontrivial.
	P may be represented as set of TM’s, LP.
	P ´ LP = {M Œ TM| L(M) = L}
	Theorem 9.11 (Rice’s Theorem) Every nontrivial property of the recursively enumerable languages a...
	Let P be a nontrivial property of RE languages.
	1. Assume P(Æ) = false (or Æ œ P).
	\ $L .'. P(L) = true or $ML .'. ML Œ LP.
	We shall reduce Lu to LP.(Lu£LP)
	1. U simulate w for M
	2. If U accepts w, L = L(M) ´ $ML Œ LP.
	2.1 ML simulate for x
	2.2 If ML accepts x, M accepts ML.
	3. If U does not accepts w, do nothing.
	2. Assume P(Æ) = true (or Æ Œ P).
	Consider complement property P, LP. = LP.
	\ P is undecidable(above). \ P is undecidable.(Thm 9.3)
	9.3.4 Problems about Turing-Machine Specifications
	1. Whether the language accepted by a TM is empty(Le, Lne).
	2. Whether the language accepted by a TM is finite.
	3. Whether the language accepted by a TM is regular.
	4. Whether the language accepted by a TM is context-free.
	Undecidable!
	Problem is a language
	language problem function
	Not R.E. Not computable
	recursively enumerable computable partial function
	recursive decidable(alway halt) (total) function
	Three class of languages(problems)
	1. Not recursively enumerable
	Not computable
	2. Recursively enumerable but not recursive
	Computable but not decidable (undecidable)
	partial m-recursive function
	3. recursive
	decidable
	total m-recursive function
	Turing Church’s Thesis
	Turing machine
	Turing(1930)
	m-recursive function(partial recursive) function
	Gödel(1934; lecture at Princeton), Herbrand, Kleene(1936)
	l-calculus
	Church(1933-41), Kleene(1935), Rosser(1935)
	Equivalence of m-recursive function and l-calculus
	Church(1936) attributes to Kleene
	Equivalence of TM, m-recursive function, and l-calculus
	Turing(1937)
	Turing-Church’s Thesis
	Following systems are equivalent
	Turing machine Turing(1930)
	m-recursive function(partial recursive) function Gödel(1934)
	l-calculus Church(1933-41)
	combinatory logic Schönfinkel(1924), Curry(1929)
	Post correspondence system Post(1936)
	type 0 grammar Chomsky(1959)
	while programs Meyer, Ritchie(1967)
	Turing-Church’s thesis still works

