CS522 8. Introduction to Turing Machines

Chap. 8 Introduction to Turing Machine

8.2 The Turing Machine

A Turing Machine(TM) M is a 7-tuples, M = (Q, T, I, 9, qq, B, F) where
1. Q: finite set of states,

2. T: a finite set of input symbols,

3. I": afinite set of tape symbols,(T < I')

4.85:QxT 29 x{LRY  or§ < (QxTM) x (Q x T x {L, R}).
(p, Y, D) € 0(g, X) wherep,q € Q, X,Y €I, D € {L, R}
In state g with tape symbol X,
move to state p, tape symbol is replaced to Y,
tape head moves to left(L) or right(R).
5. (g € Q, Initial state,
6. B: blank symbol,B e I', B ¢ T,
7. F: a set of final or accepting states, F < Q.
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Instantaneous Description for Turing Machine

(a, g, XB) € I x Q x r.
Tape string a.Xp Is surrounded by infinite blanks.
Current tape symbol is X and assume o = o’ Z.

XilY, <«
If (p, Y, L) € 8(q, X;) @ Q

(X1 Xo...Xi 1, O, XiXirq... Xn) =" (X1 X . Xio, Py Xi1YXisq... Xp)

X/,
If (p, Y, R) € 8(q, X;X) or Then

(X1 Xo...Xi 1, 0, XiXirq... Xn) =" ™ (X Xo... Xi 1Y, P, Xirg...X0)

Ifq X" < p, (a, g, XB) = (a’Z, q, XB) =" < (o, p, ZVYB).
1fq X" > p, (a, g, XB) ="~ (@Y, p, B).
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TM also is a finite automaton with read/write tape

L(M) ={w e 27| (e, qg, W) —p (o, f,B),a, peT, feF}

L is recursively enumerable, if there isa TM M such that L = L(M).
Class of recursively enumerable(RE) languages
Type 0 languages in Chomsky’s hierarchy

We say TM halt, if 35(g, X)(and does not accept) or g € F(and accepts).
TM may runs forever(does not halt) for some x ¢ L(M)

Three cases

1) TM halts and accepts x X € L(M)
1) TM halts and does not accept x X ¢ L(M)
1) TM runs forever for x X ¢ L(M)

If x € L(M), TM always halts and accepts x.
If x ¢ L(M), TM may halt and does not accept x
or TM runs forever(does not halts) for x.
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Example 8.2 L = {0"1"| n > 1}.

/X, 0/0, Y/Y. 1/Y,
do— " Q01— 7q, d1 =" 70, g > 0y,
0/0, Y/Y. XIX,
Op = > 0y, Oo =" T 0p, G & T,
Y/Y, Y/Y. B/B, —
do—''" 03 03 —'"" 703, Q3 > ' U
YIY, >
0/0, >
YIY, <
’ @ 0/0, «
YIY, > \—/
XIX, —>
H )
N
YIY, >
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(B, g, 0011) =~ (X, gy, 011) = (X0, gy, 11) = (X, g, 0Y1)

=< (B, g, XOY1) =7 (X, dg, 0YL) = (XX, qy, Y1) = (XXY, gy, 1)
=< (XX, Go, YY) =7 (X, Go, XYY) =7 (XX, dg, YY) =7 (XXY, ga, Y)
=7 (XXY, g3, Y) =7 (XXYYB, q4, B) Accept for 0011.

(B, gg, 0010) =7 (X, qq, 010) = (X0, q1, 10) = (X, g,, OY0)

= (B, gy, XOY0) =7 (X, qg, 0Y0) =7 (XX, qq, YO) =7 (XXY, q1, 0)
= (XXYO0, g5, B) Fail for 0010.

Example 8.4 m - n=max(m —n,0) monus or proper subtraction

0M10" = 0™ ",(TM as a function)
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8.3 Programming Techniques for Turing Machines
8.3.1 Storage In the state
state exercising control
storing symbols Fig. 8.13

Q=0T
Exa. 8.6(p. 338) 01" + 10™
Q ={do, a1} x {0, 1, B}

8.3.2 Multiple track(Fig. 8.13 in p. 338)
5 (QxTITM x (QxTI"x{L, R}) one control and storing n symbols
Exa. 8.7(p. 339) L = {wew| w e {0, 1}}

8.3.3 Subroutine
Example 8.8 Multiply 0M10"1 = o™,
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8.4 Extension to the Basic Turing Machine
Multitape Turing Machine
S (QxIMx(QxIMx{L,R,S".
S: no head move
Theorem 8.9 Every language accepted by multitape TM is recursively

enumerable. O(n?).

proof If multi tape TM M has k tapes, single tape TM N with 2k tracks
k tracks: simulate the contents of k tapes.
k tracks: mark the head position of k tapes.

One move in M = two sweeps of in N. O(n)
left to right sweep
update tape contents and head position
count number of heads to be updated(right bound)

right to left sweep
restore the head position of TM N to the leftmost head position
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Nondeterministic Turing Machine
5: Q x I — 2Qx ' x{L.R}

Theorem 8.11 If My, Is a nondeterministic TM, then
there is a deterministic TM Mp such that L(My) = L(Mp).
proof Every nondeterministic moves of My, path in the decision tree.

Assume the degree of the tree <Kk.
Let Mp has a two tapes.

tape 1: sequence of choices in the decision tree
tape 2: simulate the content of M.

systematically simulate all moves of M.

O(k")
NP
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8.5 Restricted Turing Machine
8.5.1 Turing Machine with semi-infinite tapes
Theorem 8.12
A two tracks of semi-infinite tapes simulates a two-way infinite tape.

8.5.2 Multistack machine
a read only input tape
multiple stacks

0. QxTx Fn—>Q><F*><...><F.

Theorem 8.13 If L is accepted by a TM, L is accepted by two-stack
machine.
proof Left of head  one stack

Right of head another stack
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8.5.3 Counter Machine
stack machine
stack alphabet ={Z,, X}
Z: bottom stack marker

X: # of B’s represents a number
we can test if number is zero
we can not directly test if two numbers are same

Theorem 8.14 A three-counter machine can simulate TM
proof two-stack machine = TM
Suppose stack vocabulary has r-1 symbols.

stack contents: Xy, X, ..., Xp <> 1 = Xy + X "2 + ..+ Xy

r-nary number with LSB on top of the stack
two counter = two stack contents (i)
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1. pop X: 1 —1/r counter3 := 0;

while1=0do 1 :=1-r; counter3 := counter3 +1 od
[* counter3 = I/r (pop X) */

2.change XtoY:1:=1+Y-X

d.pushY:1—>ir+Y counter3 := 0;

while1=0do1 —1-1; counter3 := counter3 + r od
[* counter3 = ir */
counter3d :=counter3+ Y (=ir +Y, push Y)

Theorem 8.15 A two-counter machine can simulate TM

Three counters i, |, k are reperented by one counter m = 213I5K

1. Increase I, |, kK: multiply m by 2, 3, or 5

2.testif 1, J, k = 0: divisible by 2, 3, 5: if decrease by 2, 3, 5 until zero
3. decrease I, ], k: dividemby 2, 3,0r 5

Turing Machine is a number.
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Enumeration machine
work tape: move in either direction, read/write any symbol in I
output tape: move right only, write symbols in ¥ and #(separator).

1. Generate Yx € ¥ in systematic way(lexicographic order)
g, (A, 8y, ..., @), (@181, @18y, ..., anap), .-

2. simulates x for M

3. If M accepts x, output x

If X; runs forever, xi;+.q; ¢ O(M), but X;,1 € L(M)

time sharing
Instead of simulating M on the input string one at a time,
working a few steps in one string and moves to another
pair generator
(0,0),(0,1),(1,0),(0,2),(1,1), (2,0), ..., (1, ]), ...
Simulate for x; for j-steps
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8.6 Turing Machine and Computer
Simulating Turing machine by computer
Infinite tape
storage device

Turing Machine(multi tape) as a computer
Arithmetic and Logic Unit
fa(decoder) with mauti tapes(registers, PC, ...)

memory multi tape
Input devices Input tapes
output devices ouput tapes
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Turing machine as a program(operational semantics)
A Turing Machine(TM) M is a transition(rewriting) system,
M = (C, —) where
1. C is a set of configurations(state of memories, numbers),
2. >c CxC.
c,c’eC,c—ocC.

The transition system is deterministic(monogenic), if
Ve, ¢, e C,ifc—> ¢y AC—>Cy, thency = .

Let I, T < C be two sets of initial and terminate(final) configurations.

icl teT, wheni— t (i, t)is the run of the transition system
It is usual to arrange that if t € T, then3t’ € C 5.t > t’.
Ifc ¢ TA3c € C.5.¢c— c’, the configuration c is said to be stuck
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