2-C. Finite Automata

A Moore machine is a six-tuple $M_o = (Q, T, \Pi, \delta, \lambda, q_0)$ where

Q is a set of states *T* is a set of input symbols $\delta: Q \times T \rightarrow Q$ Π is a set of output symbols, $\lambda: Q \rightarrow \Pi$ is a output function from state to output symbol., and $q_0 \in Q$ is a start state.

Q, Σ , δ and q_0 are same as DFA but no final states(F)

Assume input string is $x = a_1 a_2 \dots a_n \in T^* (n \ge 0)$ and $1 \le \forall i \le n: \delta(q_{i-1}, a_i) = q_i$. Then **Output string** of **Moore machine** M_o for input string x is $\Lambda(M_o, x) = \lambda(q_0) \lambda(q_1) \dots \lambda(q_n) \in \Pi^*$. $|\Lambda(M_o, x)| = |x| + 1 = n + 1$.

CS322

A Mealy machine is a six-tuple $M_e = (Q, T, \Pi, \delta, \lambda, q_0)$ where

Q is a set of states, T is a set of input symbols, Π is a set of output symbols, $\delta: Q \times T \rightarrow Q$, $\lambda: Q \times T \rightarrow \Pi$ is a output function from state transition to output symbols, and $q_0 \in Q$ is a start state.

Assume input string is $x = a_1 a_2 \dots a_n \in T^*(n \ge 0)$ and $1 \le \forall i \le n: \delta(q_{i-1}, a_i) = q_i$. Then **Output string** of **Mealy machine** M_e for input string $x = a_1 a_2 \dots a_n \in T^*$. $\Lambda(M_e, x) = \lambda(q_0, a_1) \lambda(q_1, a_2) \dots \lambda(q_{n-1}, a_n) \in \Pi^*$. $|\Lambda(M_e, x)| = |x| = n$. What are the elements of the output vocabulary ∏? program segments or functions, ... 한글 모아쓰기 automata

FA is type 3 but Moore and Mealey machines are type O(TM), if Π is a set of program segments.