CS204 Discrete Mathematics 9 Relations

O Relations

9.1 Relations and Their Properties
Def. 1 Let A and B be two set. Then a binary relation R from A to B Is
subset of A x B.
Rc AxB.

A: domain of the relation R. B: range(codomain) of the relation R.
Leta e A,b e B, Then(a,b) e Ror (a, b) ¢ R.

If (a, b) € R, we also write a R b and we say a is related to b by R.

If (a, b) ¢ R, we also write a R b and a is not related to b by R.
Two aspects of Relation

RcAxB relation R is a set of pairs
(a,b) e R

R: Ax B — {T, F} relation R is a infix boolean binary operation
aRDb

Ex. (3,3)e=and(3,4) ¢ =;or3=3and 3 =4.
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Function is a Relation but relation is not a function!
RcAxBvsf: A— B VaeA:3, f(a)=b €B.
If f(a) = b, then we can write (a, b) e forafhb.

.. Function is a (special kind of) relation.
Relation is not a function
)IfdJaeA.s aRbandaRb,,(b #b,), Risnota function.

function must have an unique related image.

ii) If 3a € Aand3b € B .. aR b, R is not a function.
all the elements in the domain must have its related image

Let R < A x B. Then
We write R(a) = {b,, b,, ..., b } e R,if1<Vi<n:(a,b) € R.
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A function is a special kind(subclass) of a relation
Three faces of the relation R form A to B.
1) R Is a subset of pairs
RcAxB,(a,b) e Rwhereae Aandb € B.
I1) R is a infix binary boolean(relational) operator
R:AxB—{T, F}
aRbwhereae Aandb < B.

iii) R is a set valued function from A to 2B.
R: A— 25,
R(@) = {b,, b, ..., .} where a € Aand {b,, b, ..., b } € 2°.
if1<Vi<n, (a,b) e RoraRb.forn>0,
if n=0,R(a) = {b,, b, ..., b} = 2.
Note that Ya € A, {b,, b,, ..., .} € 2% is unique.
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Three notations for the relation

1) subset of A x B, (a, b) € R.
RcAxB

11) Infix binary boolean operation, a R b,
R:AxB—>{T, F},aRb.
Example =, <, <, ... cNxNorNxN—{T, F}

3=3,3#4,3<3, ...
i) set valued function, R(a) ={b;, b,, ..., b } or &.

R: A — 2B
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Relation on A Set
Def. 2 Let Abe asetand R < A x A. R is called a relation on A.
Relation on A is a directed graph with vertices A and edges R.

Properties of Relations
Def. 3 A relation R 1s reflexive, iIf Va € A, aR a.
A relation R is irreflexive, If Va € A, aR a.
A relation may be neither reflexive nor irreflexive.

Def. 4 A relation R Is symmetric,ifaRb=DbRa.
A relation R Is asymmetric, ifaRb = bR a.
A relation R is antisymmetric, if@RbAbRa) = (a=Dh).
orif(@aRbanaz=b)=DbRa.
If a relation is a asymmetric then it is also antisymmetric.(<)

Def. 5 A relation R iIs transitive, faRbAbRc=aRc.
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Combining Relations

| et Rl’ R2 c A x B. Consider R1UR2, RlﬂRz, Rl S, R2, Rl — R2, R2 — Rl'
Def. 6 Let R < A x B, S < B x C. Then composition of R and S, denoted
asS°R={(ac)eAxC|(ab) eR,(b,c)e S}

Def. 7Let Rc A x A. Thenforn>1,

RI=R basis
R =RNeR, induction
Def. 6.1 Let A be a set. We define an identity relation
dy = {(a,a) e AxAlaeA} = A In this text sec. 9.4 in p. 977

Col. 0.5 LetRc AxB. Then

R°idy =1dy °R =R. .. 1dy IS a identity element for composition.
Def. 7.1 Let Rc A x A. Thenforn € N,

RY = id, basis % =1)

R =RMoR, induction
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Thm. 1 Let R = A x A. R is transitive, if and only if, R" = R for ¥n > 1.
Proof:

1. (if) R" = R for Vn > 1 = R is transitive.

Since R° cR. If (a, b) e Rand (b, c) € R, (a, ¢) € R%. . (a,¢) e R
". R 1s transitive.

2.(only if) R is transitive = R" < R for vn > 1.

mathematical inductiononn € N™.

basis Trivial for n = 1(since R! = R, by definition).

induction Assume R" = R for some n € N™ and R is transitive.
Consider (a, b) € R™? then 3x € A 5. (a, X) € Rand (x, b) € R".

R'cR, .. (x,b) eR. induction hypothesis
Since R is transitive; (a,x) e Rand (x,b) e R=(a, b) € R.
~. R™LcR,
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9.2 n-ary Relations and Their Applications

Def. 1 Let Ay, Ay, ..., Ay besets.Rc Ay x Ay x ... x A, IS a n-ary relation
on Ay x Ay x ... x A,,. The sets A, A,, ..., A, are called the domains of
the relations, and n is called as the degree of R.

Database and Relations
relational data model: Rc A =A; x A, x ... x A, is a data base

record (a1, @y, ..., 8, € R,
field 1<Vf<n: ar € A
(primary) key field: 1 <3k <n: YK € A, 5. (ay, 2y, ..., K, ..., a,) € R,
I(ag, s, ..., K, ..., ) < 1.
The dadabase R is said to be functional in the (key) field A,.

Examle Tablel Students (St_name, St_id, Major, GPA) p. 564
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Operations on n-ary Relations
LetR c A=A{ x Ay x...x A,. Then

Def. 2 Selection operator: Let C: A — {T, F}. Then
Sc(R) ={a € R| C(a), a € A}.
C: condition Sc: selection operator on R

Def. 3 Projection Operator: Pi1i2 . whereli; <l <..< I,< nmaps
i

n-tuple (a4, a,, ..., a,) € R, to the m-tuple (ail, I a]-m)(ims n).
P‘ﬂk}: A— Ail X A12 X... X Aim’ If {i} = (ig, Iy, ..., 1) for L <k <m.
Pﬁk}(al, 8y, ..., ay) = (ail, IR aim) 1< .
Def. 4 Join Operator:
Let Ry € Agx...xAp_p x Cyx..xChand Ry € Cyx...xCp x Byx...xBy_.
Then J(Ry, Rp) € Apx...xAp_p x C1x...xCp x Byx...xBy
If R, m-tuples, R,: n-tuples, then J(Rq, Ry): m+n—p-tuples. (p <m, n)
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9.3 Representing Relations
Representing Relation as a Boolean Matrix

R:A xB—>{0, 1} LetA={a, ay, ..., an}and B ={by, b,, ..

A boolean matrix Mg = [m;] for the relation R where
1<Vi<m:1<Vj<n:
m;; =1, 1f (&;, bj) € R,
m;; = 0, if (&, bj) ¢ R.
We may write Mg" * B[m;] instead of Mg, if needed.

Representing Relation as a Directed Graph(Digraph)

Def. 1 A directed graph or digraph G = (V, E) consistes of
a set V of vertices, and a set E — V x V of edges(arcs).

RcAxA. < G=(AR)

relation R on A vs. digraph with vertices A and edges R
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9.4 Closure of Relations
Closures Let R < A x A and P = {reflextive, symmetric, transitive}. Then
We defineap closueofRasS cAxA 5. (1) Rc Sand
VT c AxAhasthepropertype PRcT,andScT.
(1) R < S and (2) smallest one among T’s(p)).

Reflexive closure of R R U ida.
Idy = A In the text(A,) diagonal relation on A.

Symetric closure of R RUR™

Path in Digraph
Def. 1 Let G = (V, E) be a digrph. For a, b € V, a path from a, b,
Path(a,b) = (g, X1), (X1, X2), ..., (Xy-1, Xp)
1<i<n:(X.1, X)) € E,and x5 =a, x, = b.
a sequence of edges of length n
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The path may be also denoted as a sequence of vertices
Path¥(a,b) = (Xg, X4, Xo, ..., X,) of length n.

We view the set of empty edges as a path of length 0 froma e Vtoa.
A path of length n > 1 that
begins and ends at the same vertex is called cycle.

Thm. 1 LetR c A x A. There is a path of lengthn > 1 from a to b,

if and only if, (a, b) € R".
proof easy(mathematical induction)

Def. 1 A connetivity relation R™ = {(a, b)| (a, b) € R", vn> 1}
R* = Ujen,R' =R UR? U

transitive closure of R.
R*=Ujen R =RPURTUR? L

reflexive and transitive closure of R.
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Computing transitive closure R™.

Let A and B be sets, Rc A x A, f, g: A — 2% (set valued functions), and
fa)={ceClceg(@}u{ceClaRb,cef(b)}
fa) ={c € g(@)} v {c € f(b)| aR b}.
f(a) = g(a) v u, rp f(b). (recursive definition of f) Then
f(a) ={c € C|c e g(b),aR b}
f(a) = g (a). (iterative definition of f)

Warshall’s algorithm o(n®)
Depth first search O(n?)
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Algorithm Depth first search
S: stack of Vertex; n(\Vertex) array of Depth;
procedure Traverse(x: Vertex; d: Depth);
push x onto S; n(x) :=d; f(x) := g(x);
fory € Vertex where x R y do
If n(y) = 0 then Traverse(y, d+1) fi;
néx) = min(n(x), n(y)); f(x) := f(x) U f(y)
0a,
If n(X) = d then repeat
y = pop of S; n(y) := infinite; f(y) := f(x)
until y =x
fi
end procedure Traverse
for x e Vertex do n(x) :=0; f(x) :={} od;
for x e Vertex where n(x) = 0 do Traverse(x, 1) od
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9.5 Equivalence Relations
Def. 1 Let R < A x A. R is called equivalence relation,
If it Is reflexive, symmetric, and transitive.

Def. 2 a, b € A are said to be related equivalent, written a ~ b, if R is an
equivalent relationon Aand aR b.

Def. 3 Let R < A x A be an equivalence relation.
[a]g = {b| @ R b} is called the equivalence class of a w.r.t. R.

If b € [a]g, b Is called the representative of the equivalent class.
Note that a € [a]g, since R is reflexive.

EX.=, < Z x Z Is an equivalent relation. Equivalent classes are
[0]54: {....,-8,-4,0,4,8, ...} [1]54: {...,-7.-3,1,5,9, ...}

[2].,={....-6,-2,2,6,10, ...} [Bl.,={...-5,-1,3,7,11, ..}
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Thm. 1 Let R < A x A be an quivalence relation. Three statments are
logically equivalent.
)aRDb i) [a]lr = [b]r i) [a]g N [b]g # .
proof
1) 1) =)
Vc e |alg,aRc,aRb,bRa. .. bRc,ce[b]g .. [alg < [b]r
Vc e [b]g,bRc,aRb. .. aRc,ce[alg. .. [blg < [a]g.
2) 1) > iii) Assume [a]g = [P]g, @R b. .. a,b € [a]g N [b]gr = D.
3) 1ii) — 1) Suppose [a]g N [P]gr # C, [a]gr # D and [b]r = C.
dce[algace[b]lgraRc,bRc.cRb, .. aRb.

Lemma 1.5 Let R < A x A be an equivalence relation.
Uaea [alr = A a < [alq.

~. {[a]lg < Al a € A} Is a partition of A.
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Definition 1.5 Let S be a set. The partition of S, {A;| 1 € 1} I: index set, is

) Aj= I, 1€ l. nonempty
i) Ajn Ay =, when 1 #J. disjoint
1) Ui A=A exhaustive

Thm. 2 Let R be a equivalent relation on A.
Then the equivalent classes of R form a partion of A.
Conversely, given a partition {A;| | € I} of the set A,

there is an equivalent relation R that has the set A;, 1 € |,
as Its equivalent class.

Realtion R c A x A O(n?) where |A| = n.
Equivalent relationRc Ax A  O(n)
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9.6 Partial Ordering
Def. 1 Let R < A x A. RIs called (ir)reflexive partial order,
If it 1s (ir)reflexive, antisymmetric, and transitive.
(A, R) is called partially odreded set or poset.
ExX.123(Z, <), (Z+,]), (2S, <) are posets.

Def. 2 Let (A, <) be poset and a, b € A. Then
The elements a and b are comparable if eithera<borb<a.
The elements a and b are incomparable if neithera<bnorb<a

Def. 3 Let (S, <) be poset. If Va, b € S, a and b are comparable,
S is called totally ordered set, linearly ordered set, or chain.
< is called total order or linear order.

Ex. 6, 7 (Z, <) is a total order, but (Z*, |) is not a total order
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Def. 4 A poset (S, <) is a well-ordered set, If <is a total order,
and every nonempty subset of S has a least emelent.

Ex. 8 (Z"xZ", <) is well-ordered, but (Z, <) is not well-orderd.

Thm .1 Principle of Well-Ordered Induction

Let (S, <) be a well-ordered set and Vx € S, P(X), If
Vy € S 3. Xx<y: P(X) = P(y).

proof Suppose 3y € S, —P(y).
A={xe S| -PX)}=OD.
Let a < A be the least element.
da e A, Vx e S.a.x<a: P(x) = P(a).
Contradiction 3y € S, =P(y).
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Lexicographic order( AfA&=A )
Let (Aq, <7) and (A,, <,) be well-ordered sets. Then

we define (A1 x A,, <1,») a lexicographic order

(@1, @) <1x2 (01, 02), 1T (a3 <1 by) v ((ag =1 by) A (a2 <5 7).
Ext. Let (A1, <1), (A, <o), ... (A, <) be well-ordered sets. Then
we define (Ag x Ay x ... x Ay, <140...%4 = <) @ lexicographic order

(a1,8y,...,8,) < (by,by,...,by), if 1<Fi<n: [(1<V<i: a; =j bj) A (& <j by].

Ext. Let (V, <) be a well-ordered set. Then we define (V' <p) as

(@1,89,...,8p) <L (D1,02,...,by), if (1<7i<n: [(1<V]<i: & = by) A (3 < by)].
v [(n<m) A (I<Vin: a; = by)].

(V", <) is a well-ordered set.
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Hasse Diagram

9 Relations

Let (A, <) be a poset. We say a covers b, ifa<ba c e A,a<cac<h.

(A, covers) iIs a Hasse Diagram.
Maximal and Minimal Elements
Let (A, <) be a poset.
We say a is a maximal, if b € A, a <b.
We say a is a minimal, if b € A, b<a.
We say a Is the greatest element, iIf Vb € A, b < a.
We say a Is the least elements, iIf Vb € A, a<Dh.
ub(S) ={c e Alae S,a<c} upper bound of S.
Ib(S) ={c e Ajae S, c<a} lower bound of S.
lub(S) = {c € Al c € ub(S), d € ub(S), c < d}

the least upper bound of S.
glb(S) ={c € Al c < Ib(S), d € Ib(S), d < c}

the greatest lower bound S.
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Lattice
A poset (A, <) is called lattice. If every pair of elements has both a least
upper bound, and a greatest lower bound.

(Z, <) is a lattice. max, min: Zx2Z —»>Z
(Z™,]) is a lattice. lcm, gcd: Z* x 2T > Z7
(2°, ) is a lattice. U, M 29 x 25 528

Topological Sorting
Lemma 1 Every finite nonempty poset (A, <) has

at least one minimal elements.
Algorithm 1 Topological sorting
Construct a total ordering <; from a partial ordering <,

a<¢b, ifand only If, a <, b or a and b are incomparable.
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	a set V of vertices, and a set E Õ V ¥ V of edges(arcs).
	R Õ A ¥ A. ¤ G = (A, R)
	relation R on A vs. digraph with vertices A and edges R
	9.4 Closure of Relations
	Closures Let R Õ A ¥ A and P = {reflextive, symmetric, transitive}. Then
	We define a p closue of R as S Õ A ¥ A .'. (1) R Õ S and
	"T Õ A ¥ A has the property p Œ P, R Õ T, and S Õ T.
	(1) R Õ S and (2) smallest one among T’s(p)).
	Reflexive closure of R R » idA.
	idA = D in the text(DA) diagonal relation on A.
	Symetric closure of R R » R-1.
	Path in Digraph
	Def. 1 Let G = (V, E) be a digrph. For a, b Œ V, a path from a, b,
	Path(a,b) = (x0, x1), (x1, x2), …, (xn-1, xn)
	1 £ i £ n: (xi-1, xi) Œ E, and x0 = a, xn = b.
	a sequence of edges of length n
	The path may be also denoted as a sequence of vertices
	PathV(a,b) = (x0, x1, x2, …, xn) of length n.
	We view the set of empty edges as a path of length 0 from a Œ V to a .
	A path of length n ³ 1 that
	begins and ends at the same vertex is called cycle.
	Thm. 1 Let R Õ A ¥ A. There is a path of length n ³ 1 from a to b,
	if and only if, (a, b) Œ Rn.
	proof easy(mathematical induction)
	Def. 1 A connetivity relation R+ = {(a, b)| (a, b) Œ Rn, "n ³ 1}
	R+ = »iŒN1 Ri = R1 » R2 » …
	transitive closure of R.
	R* = »iŒN0 Ri = R0 » R1 » R2 » …
	reflexive and transitive closure of R.
	Computing transitive closure R*.
	Let A and B be sets, R Õ A ¥ A, f, g: A Æ 2C.(set valued functions), and
	f(a) = {c Œ C| c Œ g(a)} » {c Œ C| a R b, c Œ f(b)}.
	f(a) = {c Œ g(a)} » {c Œ f(b)| a R b}.
	f(a) = g(a) » »a R b f(b). (recursive definition of f) Then
	f(a) = {c Œ C| c Œ g(b), a R* b}.
	f(a) = g*(a). (iterative definition of f)
	Warshall’s algorithm O(n3)
	Depth first search O(n2)
	Algorithm Depth first search
	S: stack of Vertex; n(Vertex) array of Depth;
	procedure Traverse(x: Vertex; d: Depth);
	push x onto S; n(x) := d; f(x) := g(x);
	for y Œ Vertex where x R y do
	if n(y) = 0 then Traverse(y, d+1) fi;
	n(x) := min(n(x), n(y)); f(x) := f(x) » f(y)
	od;
	if n(x) = d then repeat
	y = pop of S; n(y) := infinite; f(y) := f(x)
	until y = x
	fi
	end procedure Traverse
	for x Œ Vertex do n(x) := 0; f(x) := {} od;
	for x Œ Vertex where n(x) = 0 do Traverse(x, 1) od
	9.5 Equivalence Relations
	Def. 1 Let R Õ A ¥ A. R is called equivalence relation,
	if it is reflexive, symmetric, and transitive.
	Def. 2 a, b Œ A are said to be related equivalent, written a ~ b, if R is an equivalent relation ...
	Def. 3 Let R Õ A ¥ A be an equivalence relation.
	[a]R = {b| a R b} is called the equivalence class of a w.r.t. R.
	If b Œ [a]R, b is called the representative of the equivalent class.
	Note that a Œ [a]R, since R is reflexive.
	Ex. º4 Õ Z ¥ Z is an equivalent relation. Equivalent classes are
	[0]º4 = {…, -8, -4, 0, 4, 8, …} [1]º4 = {…, -7. -3, 1, 5, 9, …}
	[2]º4 = {…, -6, -2, 2, 6, 10, …} [3]º4 = {…, -5, -1, 3, 7, 11, …}
	Thm. 1 Let R Õ A ¥ A be an quivalence relation. Three statments are logically equivalent.
	i) a R b ii) [a]R = [b]R iii) [a]R « [b]R ¹ Æ.
	proof
	1) i) Æ ii)
	"c Œ [a]R, a R c, a R b, b R a. \ b R c, c Œ [b]R. \ [a]R Õ [b]R.
	"c Œ [b]R, b R c, a R b. \ a R c, c Œ [a]R. \ [b]R Õ [a]R.
	2) ii) Æ iii) Assume [a]R = [b]R, a R b. \ a, b Œ [a]R « [b]R ¹ Æ.
	3) iii) Æ i) Suppose [a]R « [b]R ¹ Æ, [a]R ¹ Æ and [b]R ¹ Æ.
	$c Œ [a]R Ÿ c Œ [b]R. a R c, b R c. c R b, \ a R b.
	Lemma 1.5 Let R Õ A ¥ A be an equivalence relation.
	»aŒA [a]R = A. a Œ [a]R.
	\ {[a]R Õ A| a Œ A} is a partition of A.
	Definition 1.5 Let S be a set. The partition of S, {Ai| i Œ I} I: index set, is
	i) Ai ¹ Æ, i Œ I. nonempty
	ii) Ai « Aj = Æ, when i ¹ j. disjoint
	iii) »iŒI Ai = A. exhaustive
	Thm. 2 Let R be a equivalent relation on A.
	Then the equivalent classes of R form a partion of A.
	Conversely, given a partition {Ai| i Œ I} of the set A,
	there is an equivalent relation R that has the set Ai, i Œ I,
	as its equivalent class.
	Realtion R Õ A ¥ A O(n2) where |A| = n.
	Equivalent relation R Õ A ¥ A O(n)
	9.6 Partial Ordering
	Def. 1 Let R Õ A ¥ A. R is called (ir)reflexive partial order,
	if it is (ir)reflexive, antisymmetric, and transitive.
	(A, R) is called partially odreded set or poset.
	Ex. 1 2 3 (Z, £), (Z+, |), (2S, Õ) are posets.
	Def. 2 Let (A, £) be poset and a, b Œ A. Then
	The elements a and b are comparable if either a £ b or b £ a.
	The elements a and b are incomparable if neither a £ b nor b £ a
	.
	Def. 3 Let (S, £) be poset. If "a, b Œ S, a and b are comparable,
	S is called totally ordered set, linearly ordered set, or chain.
	£ is called total order or linear order.
	Ex. 6, 7 (Z, £) is a total order, but (Z+, |) is not a total order
	Def. 4 A poset (S, £) is a well-ordered set, if £ is a total order,
	and every nonempty subset of S has a least emelent.
	Ex. 8 (Z+¥Z+, £L) is well-ordered, but (Z, £) is not well-orderd.
	Thm .1 Principle of Well-Ordered Induction
	Let (S, £) be a well-ordered set and "x Œ S, P(x), if
	"y Œ S .'. x < y: P(x) ﬁ P(y).
	proof Suppose $y Œ S, ØP(y).
	A = {x Œ S| ØP(x)} ¹ Æ.
	Let a Œ A be the least element.
	$a Œ A, "x Œ S .'. x < a: P(x) ﬁ P(a).
	Contradiction $y Œ S, ØP(y).
	Lexicographic order(ªÁ¿¸º¯º�)
	Let (A1, £1) and (A2, £2) be well-ordered sets. Then
	we define (A1 ¥ A2, £1¥2) a lexicographic order
	(a1, a2) £1¥2 (b1, b2), if (a1 <1 b1) ⁄ ((a1 =1 b1) Ÿ (a2 £2 b2)).
	Ext. Let (A1, £1), (A2, £2), º (An, £n) be well-ordered sets. Then
	we define (A1 ¥ A2 ¥ º ¥ An, £1¥2º¥n = £L) a lexicographic order
	(a1,a2,º,an) £L (b1,b2,º,bn), if 1£$i<n: [(1£"j<i: aj =j bj ) Ÿ (ai <i bi)].
	Ext. Let (V, £) be a well-ordered set. Then we define (V*, £L) as
	(a1,a2,º,an) £L (b1,b2,º,bn), if (1£$i<n: [(1£"j<i: aj =j bj ) Ÿ (ai < bi)].
	⁄ [(n < m) Ÿ (1£"i£n: ai = bi)].
	(V*, £L) is a well-ordered set.
	Hasse Diagram
	Let (A, £) be a poset. We say a covers b, if a < b Ÿ \$c Œ A, a £ c Ÿ c £ b.
	(A, covers) is a Hasse Diagram.
	Maximal and Minimal Elements
	Let (A, £) be a poset.
	We say a is a maximal, if \$b Œ A, a < b.
	We say a is a minimal, if \$b Œ A, b < a.
	We say a is the greatest element, if "b Œ A, b £ a.
	We say a is the least elements, if "b Œ A, a £ b.
	ub(S) = {c Œ A| a Œ S, a £ c} upper bound of S.
	lb(S) = {c Œ A| a Œ S, c £ a} lower bound of S.
	lub(S) = {c Œ A| c Œ ub(S), d Œ ub(S), c £ d}
	the least upper bound of S.
	glb(S) = {c Œ A| c £ lb(S), d Œ lb(S), d £ c}
	the greatest lower bound S.
	Lattice
	A poset (A, £) is called lattice. If every pair of elements has both a least upper bound, and a g...
	(Z, £) is a lattice. max, min: Z ¥ Z Æ Z
	(Z+, |) is a lattice. lcm, gcd: Z+ ¥ Z+ Æ Z+
	(2S, Õ) is a lattice. », «: 2S ¥ 2S Æ 2S
	Topological Sorting
	Lemma 1 Every finite nonempty poset (A, £p) has
	at least one minimal elements.
	Algorithm 1 Topological sorting
	Construct a total ordering <t from a partial ordering £p.
	a <t b, if and only if, a £p b or a and b are incomparable.

