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9 Relations
9.1 Relations and Their Properties
Def. 1 Let A and B be two set. Then a binary r
subset of A  B.

R  A  B.
A: domain of the relation R. B: range(codo

Let a  A, b  B, Then (a, b)  R or (a, b)  R.
If (a, b)  R, we also write a R b and we say
If (a, b)  R, we also write a /R b and a is no

Two aspects of Relation
R  A  B relation R is a set of pairs

(a, b)  R
R: A  B  {T, F}  relation R is a infix boo

a R b
Ex. (3, 3)  = and (3, 4)  =; or 3 = 3 and 3  
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tion!

 is not a function.
image.
 function.
ve its related image

i  n: (a, bi)   R.
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Function is a Relation but relation is not a func
R  A  B vs f: A  B aA:f(a)=b B.
If f(a) = b, then we can write (a, b)  f or a f b.
. Function is a (special kind of) relation.
Relation is not a function

i) If a  A  a R b1 and a R b2,(b1  b2), R
function must have an unique related 

ii) If a  A and / \b  B a R b, R is not a
all the elements in the domain must ha

Let R  A  B. Then
We write R(a) = {b1, b2, …, bn}  R, if 1  
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on

B.
tor

 {b1, b2, …, bn}  2B.

i. for n  0,

n} = .
B is unique.
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A function is a special kind(subclass) of a relati
Three faces of the relation R form A to B.
i) R is a subset of pairs

R  A  B, (a, b)  R where a  A and b  
ii) R is a infix binary boolean(relational) opera

R: A  B  {T, F}
a R b where a  A and b  B.

iii) R is a set valued function from A to 2B.
R: A  2B.

R(a) = {b1, b2, …, bn} where a  A and
if 1  i  n, (a, bi)  R or a R b

if n=0, R(a) = {b1, b2, …, b

Note that a  A, {b1, b2, …, bn}   2
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  {T, F}

n} or .
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Three notations for the relation
i) subset of A  B, (a, b)  R.

R  A  B
ii) infix binary boolean operation, a R b,

R: A  B  {T, F}, a R b.
Example =, , ,    N  N or N  N

3 = 3, 3  4, 3  3, 
iii) set valued function, R(a) = {b1, b2, …, b

R: A  2B.
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 relation on A.
ces A and edges R.

.
 /R a.
lexive.

a.
 b /R a.

b  b R a)  (a = b).
 b  a  b)  b /R a.
ntisymmetric.()

 a R c.
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Relation on A Set
Def. 2 Let A be a set and R  A  A. R is called a

Relation on A is a directed graph with verti

Properties of Relations
Def. 3 A relation R is reflexive, if a  A, a R a

A relation R is irreflexive, if a  A, a
A relation may be neither reflexive nor irref

Def. 4 A relation R is symmetric, if a R b  b R 
A relation R is asymmetric, if a R b 
A relation R is antisymmetric, if (a R 

or if (a R
If a relation is a asymmetric then it is also a

Def. 5 A relation R is transitive, if a R b  b R c 
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  R2, R1  R2, R2  R1.
tion of R and S, denoted
.

ation
is text sec. 9.4 in p. 977

ment for composition.

(x0 = 1)
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Combining Relations
Let R1, R2   A  B. Consider R1R2, R1R2, R1
Def. 6 Let R  A  B, S  B  C. Then composi
as S  R = {(a, c)  A  C| (a, b)  R, (b, c)  S}
Def. 7 Let R  A  A. Then for n  1,

R1 = R basis
Rn+1 = Rn  R. induction

Def. 6.1 Let A be a set. We define an identity rel
idA = {(a, a)  A  A| a  A } =  in th

Col. 0.5 Let R  A  B. Then
R  idA = idA  R = R.  idA is a identity ele

Def. 7.1 Let R  A  A. Then for n  N,
R0 = idA basis

Rn+1 = Rn  R. induction
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y if, Rn  R for n  1.

 R2.  (a, c)  R

n).
R is transitive.
R and (x, b)  Rn.
s
 (a, b)  R.
5/4/16 Kwang-Moo Choe

Thm. 1 Let R  A  A. R is transitive, if and onl
Proof:
1. (if) Rn  R for n  1  R is transitive.
Since R2  R. If (a, b)  R and (b, c)  R, (a, c) 

 R is transitive.
2.(only if) R is transitive  Rn  R for n  1.
mathematical induction on n  N+.
basis Trivial for n = 1(since R1 = R, by definitio
induction Assume Rn  R for some n  N+ and 
Consider (a, b)  Rn+1, then x  A  (a, x)  
Rn  R,  (x, b)  R. induction hypothesi
Since R is transitive; (a, x)  R and (x, b)  R 

 Rn+1  R.
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  An is a n-ary relation
e called the domains of

n is a data base

a2, …, K, …, an)  R,

ey) field Ak.

GPA) p. 564
5/4/16 Kwang-Moo Choe

9.2 n-ary Relations and Their Applications
Def. 1 Let A1, A2, …, An be sets.R  A1  A2  …
on A1  A2  …  An. The sets A1, A2, …, An ar
the relations, and n is called as the degree of R.

Database and Relations
relational data model: R  A = A1  A2  …  A

record (a1, a2, …, an)  R,
field 1  f  n: af  Af.

(primary) key field: 1  k  n: K  Ak  (a1, 
|(a1, a2, …, K, …, an)|  1.

The dadabase R is said to be functional in the (k

Examle Table1 Students (St_name, St_id, Major, 



CS204 Discrete Mathematics 9 Relations

9

hen

or on R
 i2 < … <  im  n maps

i1 
, ai2 

,…, aim 
)(im  n).

 …, im) for 1  k  m.
im  n. 

 

…Cp  B1…Bnp.
 B1…Bnp.
np-tuples.  (p   m, n)
5/4/16 Kwang-Moo Choe

Operations on n-ary Relations
Let R   A = A1  A2 … An. Then
Def. 2 Selection operator: Let C: A  {T, F}. T

SC(R) = {a  R| C(a), a  A}.
C: condition SC: selection operat

Def. 3 Projection Operator: Pi1 i2 im
  where i1 <

n-tuple (a1, a2, …, an)  R, to the m-tuple (a
P

 {ik}
: A  Ai1 

  Ai2 
 …  Aim

, if {ik} = (i1, i2,
P{ik}

(a1, a2, …, an) = (ai1 
, ai2 

,…, aim 
)

Def. 4 Join Operator:
Let R1  A1…Amp  C1…Cp and R2   C1

Then J(R1, R2)  A1…Amp  C1…Cp 
If R1: m-tuples, R2: n-tuples, then J(R1, R2): m+
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B = {b1, b2, , bn}.
n R where

 needed.

raph)
onsistes of 
ges(arcs).

dges R
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9.3 Representing Relations
Representing Relation as a Boolean Matrix
R: A   B  {0, 1}. Let A = {a1, a2, , am} and 

A boolean matrix MR = [mij] for the relatio
1  i  m: 1  j  n: 

mij = 1, if (ai, bj)  R,
mij = 0, if (ai, bj)  R.

We may write MR
A  B[mij] instead of MR, if

Representing Relation as a Directed Graph(Dig
Def. 1 A directed graph or digraph G = (V, E) c

a set V of vertices, and a set E  V  V of ed
R  A  A.  G = (A, R)
relation R on A vs. digraph with vertices A and e
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metric, transitive}. Then
  S and
nd S  T.

al relation on A.

 path from a, b,

= b.
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9.4 Closure of Relations
Closures Let R  A  A and P = {reflextive, sym
We define a p closue of R as S   A  A  (1) R

T  A  A has the property p  P, R  T, a
(1) R  S and (2) smallest one among T’s(p)).

Reflexive closure of R R  idA.
idA =  in the text(A)    diagon

Symetric closure of R R  R1.

Path in Digraph
Def. 1 Let G = (V, E) be a digrph. For a, b  V, a

Path(a,b) = (x0, x1), (x1, x2), …, (xn-1, xn)
1  i  n: (xi-1, xi)  E, and x0 = a, xn 

a sequence of edges of length n
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ertices

th 0 from a  V to a .

called cycle.

n  1 from a to b,

  Rn, n  1}
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The path may be also denoted as a sequence of v
PathV(a,b) = (x0, x1, x2, …, xn) of length n.

We view the set of empty edges as a path of leng
A path of length n  1 that

begins and ends at the same vertex is 

Thm. 1 Let R  A  A. There is a path of length 
if and only if, (a, b)  Rn.

proof easy(mathematical induction)
Def. 1 A connetivity relation R+ = {(a, b)| (a, b)
R+ = iN1

 Ri = R1  R2  …
transitive closure of R.

R* = iN0
 Ri = R0  R1  R2  …

reflexive and transitive closure of R.



CS204 Discrete Mathematics 9 Relations

13

t valued functions), and
 f(b)}.

finition of f) Then
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Computing transitive closure R*.
Let A and B be sets, R  A  A,  f, g: A  2C.(se

f(a) = {c  C| c  g(a)}  {c  C| a R b, c 
f(a) = {c  g(a)}  {c  f(b)| a R b}.
f(a) = g(a)  a R b f(b). (recursive de

f(a) = {c  C| c  g(b), a R* b}.
f(a) = g*(a). (iterative definition of f)

Warshall’s algorithm O(n3)
Depth first search O(n2)
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) := g(x);

) := f(x)  f(y)

) := f(x)

) := {} od;
od
5/4/16 Kwang-Moo Choe

Algorithm Depth first search
S: stack of Vertex; n(Vertex) array of Depth;
procedure Traverse(x: Vertex; d: Depth);

push x onto S; n(x) := d; f(x
for y  Vertex where x R y do 

if n(y) = 0 then Traverse(y, d+1) fi;
 n(x) := min(n(x), n(y)); f(x

od;
if n(x) = d then repeat

y = pop of S; n(y) := infinite; f(y
until  y = x

fi
end procedure Traverse
for x   Vertex do n(x) := 0; f(x
for x   Vertex where n(x) = 0 do Traverse(x, 1) 
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lation,

, written a  b, if R is an

.
lass of a w.r.t. R. 
quivalent class.

lent classes are
…, -7. -3, 1, 5, 9, …}
…, -5, -1, 3, 7, 11, …}
5/4/16 Kwang-Moo Choe

9.5 Equivalence Relations
Def. 1 Let R  A  A. R is called equivalence re

if it is reflexive, symmetric, and transitive.

Def. 2 a, b  A are said to be related equivalent
equivalent relation on A and a R b.

Def. 3 Let R  A  A be an equivalence relation
[a]R = {b| a R b} is called the equivalence c

If b  [a]R, b is called the representative of the e
Note that a  [a]R, since R is reflexive.

Ex. 4  Z  Z is an equivalent relation. Equiva
[0]4

 = {…, -8, -4, 0, 4, 8, …} [1]4
 = {

[2]4
 = {…, -6, -2, 2, 6, 10, …} [3]4

 = {
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on. Three statments are

 [a]R  [b]R  .

 [b]R.  [a]R  [b]R.
 [b]R  [a]R.
 [a]R  [b]R  .
nd [b]R  .

 a R b.

ation.
.

5/4/16 Kwang-Moo Choe

Thm. 1 Let R  A  A be an quivalence relati
logically equivalent.

i) a R b ii) [a]R = [b]R iii)
proof
1) i)  ii)

c  [a]R, a R c, a R b, b R a.  b R c, c 
c  [b]R, b R c, a R b.  a R c, c  [a]R. 

2) ii)  iii) Assume [a]R = [b]R, a R b.  a, b 
3) iii)  i) Suppose [a]R  [b]R  , [a]R   a

c  [a]R  c  [b]R. a R c, b R c. c R b, 

Lemma 1.5 Let R  A  A be an equivalence rel
aA [a]R = A. a  [a]R
 {[a]R  A| a  A} is a partition of A.
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{Ai| i  I} I: index set, is
ty

ive

tion of A.
he set A,
has the set Ai, i  I,

ere |A| = n.
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Definition 1.5 Let S be a set. The partition of S, 
i) Ai  , i  I. nonemp
ii) Ai  Aj = , when i  j. disjoint
iii) iI  Ai = A. exhaust

Thm. 2 Let R be a equivalent relation on A.
Then the equivalent classes of R form a par
Conversely, given a partition {Ai| i  I} of t

there is an equivalent relation R that 
as its equivalent class.

Realtion R  A  A O(n2) wh
Equivalent relation R  A  A O(n)
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rtial order,
sitive.
r poset.

er a  b or b  a.
either a  b nor b  a

re comparable,
red set, or chain.

 total order
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9.6 Partial Ordering
Def. 1 Let R  A  A. R is called (ir)reflexive pa

if it is (ir)reflexive, antisymmetric, and tran
(A, R) is called partially odreded set o

Ex. 1 2 3 (Z, ), (Z+, |), (2S,  ) are posets.

Def. 2 Let (A, ) be poset and a, b  A. Then
The elements a and b are comparable if eith
The elements a and b are incomparable if n

.
Def. 3 Let (S, ) be poset. If a, b  S, a and b a

S is called totally ordered set, linearly orde
 is called total order or linear order.

Ex. 6, 7 (Z, ) is a total order, but (Z+, |) is not a
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 a total order,
melent.

not well-orderd.

, if
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Def. 4 A poset (S, ) is a well-ordered set, if  is
and every nonempty subset of S has a least e

Ex. 8 (Z+Z+, L) is well-ordered, but (Z, ) is 

Thm .1 Principle of Well-Ordered Induction
Let (S, ) be a well-ordered set and x  S, P(x)

y  S  x  y: P(x)  P(y).
proof Suppose y  S,P(y).

A = {x  S| P(x)}  .
Let a   A be the least element.
a  A, x  S  x  a: P(x)  P(a).
Contradiction y  S,P(y).
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en

 b1)  (a2 2 b2)).
dered sets. Then
lexicographic order
i: aj =j bj ) (ai <i bi)].

fine (V*, L) as
i: aj =j bj ) (ai < bi)].
 bi)].
5/4/16 Kwang-Moo Choe

Lexicographic order( 사전순서 )
Let (A1, 1) and (A2, 2) be well-ordered sets. Th
we define (A1  A2, 12) a lexicographic order

(a1, a2) 12 (b1, b2), if (a1 1 b1)  ((a1 =1
Ext. Let (A1, 1), (A2, 2),  (An, n) be well-or
we define (A1  A2    An, 12n = L) a 
(a1,a2,,an) L (b1,b2,,bn), if 1in: [(1j

Ext. Let (V, ) be a well-ordered set. Then we de
(a1,a2,,an) L (b1,b2,,bn), if (1in: [(1j

 [(n  m) (1in: ai =

(V*, L) is a well-ordered set.
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  \c  A, a  c  c  b.

.

of S.
f S.
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Hasse Diagram
Let (A, ) be a poset. We say a covers b, if a  b 

(A, covers) is a Hasse Diagram.
Maximal and Minimal Elements
Let (A, ) be a poset. 
We say a is a maximal, if  \b  A, a  b.
We say a is a minimal, if  \b   A, b  a.
We say a is the greatest element, if b  A, b  a
We say a is the least elements, if b  A, a  b.
ub(S) = {c  A| a  S, a  c}  upper bound 
lb(S) = {c  A| a  S, c  a}  lower bound o
lub(S) = {c  A| c  ub(S), d  ub(S), c  d}

the least upper bound of S.
glb(S) = {c  A| c  lb(S), d  lb(S), d  c}

the greatest lower bound S.
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lements has both a least

 Z  Z
 Z+  Z+

 2S

s

ring p.
comparable.
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Lattice
A poset (A, ) is called lattice. If every pair of e
upper bound, and a greatest lower bound.

(Z, ) is a lattice. max, min: Z 
(Z+, |) is a lattice. lcm, gcd: Z+ 
(2S, ) is a lattice. , : 2S  2S 

Topological Sorting
Lemma 1 Every finite nonempty poset (A, p) ha

at least one minimal elements.
Algorithm 1 Topological sorting
Construct a total ordering t from a partial orde

a t b, if and only if, a p b or a and b are in
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	SC(R) = {a Œ R| C(a), a Œ A}.
	C: condition SC: selection operator on R
	Def. 3 Projection Operator: Pi1 i2 º im where i1 < i2 < … < im£ n maps
	n-tuple (a1, a2, …, an) Œ R, to the m-tuple (ai1 , ai2 ,…, aim )(im£ n).
	P {ik }: A Æ Ai1 ¥ Ai2 ¥… ¥ Aim, if {ik} = (i1, i2, …, im) for 1 £ k £ m.
	P{ik }(a1, a2, …, an) = (ai1 , ai2 ,…, aim ) im£ n.
	Def. 4 Join Operator:
	Let R1 Õ A1¥…¥Am-p ¥ C1¥…¥Cp and R2 Õ C1¥…¥Cp ¥ B1¥…¥Bn-p.
	Then J(R1, R2) Œ A1¥…¥Am-p ¥ C1¥…¥Cp ¥ B1¥…¥Bn-p.
	If R1: m-tuples, R2: n-tuples, then J(R1, R2): m+n-p-tuples. (p £ m, n)
	9.3 Representing Relations
	Representing Relation as a Boolean Matrix
	R: A ¥ B Æ {0, 1}. Let A = {a1, a2, º, am} and B = {b1, b2, º, bn}.
	A boolean matrix MR = [mij] for the relation R where
	1 £ "i £ m: 1 £ "j £ n:
	mij = 1, if (ai, bj) Œ R,
	mij = 0, if (ai, bj) œ R.
	We may write MRA ¥ B[mij] instead of MR, if needed.
	Representing Relation as a Directed Graph(Digraph)
	Def. 1 A directed graph or digraph G = (V, E) consistes of
	a set V of vertices, and a set E Õ V ¥ V of edges(arcs).
	R Õ A ¥ A. ¤ G = (A, R)
	relation R on A vs. digraph with vertices A and edges R
	9.4 Closure of Relations
	Closures Let R Õ A ¥ A and P = {reflextive, symmetric, transitive}. Then
	We define a p closue of R as S Õ A ¥ A .'. (1) R Õ S and
	"T Õ A ¥ A has the property p Œ P, R Õ T, and S Õ T.
	(1) R Õ S and (2) smallest one among T’s(p)).
	Reflexive closure of R R » idA.
	idA = D in the text(DA) diagonal relation on A.
	Symetric closure of R R » R-1.
	Path in Digraph
	Def. 1 Let G = (V, E) be a digrph. For a, b Œ V, a path from a, b,
	Path(a,b) = (x0, x1), (x1, x2), …, (xn-1, xn)
	1 £ i £ n: (xi-1, xi) Œ E, and x0 = a, xn = b.
	a sequence of edges of length n
	The path may be also denoted as a sequence of vertices
	PathV(a,b) = (x0, x1, x2, …, xn) of length n.
	We view the set of empty edges as a path of length 0 from a Œ V to a .
	A path of length n ³ 1 that
	begins and ends at the same vertex is called cycle.
	Thm. 1 Let R Õ A ¥ A. There is a path of length n ³ 1 from a to b,
	if and only if, (a, b) Œ Rn.
	proof easy(mathematical induction)
	Def. 1 A connetivity relation R+ = {(a, b)| (a, b) Œ Rn, "n ³ 1}
	R+ = »iŒN1 Ri = R1 » R2 » …
	transitive closure of R.
	R* = »iŒN0 Ri = R0 » R1 » R2 » …
	reflexive and transitive closure of R.
	Computing transitive closure R*.
	Let A and B be sets, R Õ A ¥ A, f, g: A Æ 2C.(set valued functions), and
	f(a) = {c Œ C| c Œ g(a)} » {c Œ C| a R b, c Œ f(b)}.
	f(a) = {c Œ g(a)} » {c Œ f(b)| a R b}.
	f(a) = g(a) » »a R b f(b). (recursive definition of f) Then
	f(a) = {c Œ C| c Œ g(b), a R* b}.
	f(a) = g*(a). (iterative definition of f)
	Warshall’s algorithm O(n3)
	Depth first search O(n2)
	Algorithm Depth first search
	S: stack of Vertex; n(Vertex) array of Depth;
	procedure Traverse(x: Vertex; d: Depth);
	push x onto S; n(x) := d; f(x) := g(x);
	for y Œ Vertex where x R y do
	if n(y) = 0 then Traverse(y, d+1) fi;
	n(x) := min(n(x), n(y)); f(x) := f(x) » f(y)
	od;
	if n(x) = d then repeat
	y = pop of S; n(y) := infinite; f(y) := f(x)
	until y = x
	fi
	end procedure Traverse
	for x Œ Vertex do n(x) := 0; f(x) := {} od;
	for x Œ Vertex where n(x) = 0 do Traverse(x, 1) od
	9.5 Equivalence Relations
	Def. 1 Let R Õ A ¥ A. R is called equivalence relation,
	if it is reflexive, symmetric, and transitive.
	Def. 2 a, b Œ A are said to be related equivalent, written a ~ b, if R is an equivalent relation ...
	Def. 3 Let R Õ A ¥ A be an equivalence relation.
	[a]R = {b| a R b} is called the equivalence class of a w.r.t. R.
	If b Œ [a]R, b is called the representative of the equivalent class.
	Note that a Œ [a]R, since R is reflexive.
	Ex. º4 Õ Z ¥ Z is an equivalent relation. Equivalent classes are
	[0]º4 = {…, -8, -4, 0, 4, 8, …} [1]º4 = {…, -7. -3, 1, 5, 9, …}
	[2]º4 = {…, -6, -2, 2, 6, 10, …} [3]º4 = {…, -5, -1, 3, 7, 11, …}
	Thm. 1 Let R Õ A ¥ A be an quivalence relation. Three statments are logically equivalent.
	i) a R b ii) [a]R = [b]R iii) [a]R « [b]R ¹ Æ.
	proof
	1) i) Æ ii)
	"c Œ [a]R, a R c, a R b, b R a. \ b R c, c Œ [b]R. \ [a]R Õ [b]R.
	"c Œ [b]R, b R c, a R b. \ a R c, c Œ [a]R. \ [b]R Õ [a]R.
	2) ii) Æ iii) Assume [a]R = [b]R, a R b. \ a, b Œ [a]R « [b]R ¹ Æ.
	3) iii) Æ i) Suppose [a]R « [b]R ¹ Æ, [a]R ¹ Æ and [b]R ¹ Æ.
	$c Œ [a]R Ÿ c Œ [b]R. a R c, b R c. c R b, \ a R b.
	Lemma 1.5 Let R Õ A ¥ A be an equivalence relation.
	»aŒA [a]R = A. a Œ [a]R.
	\ {[a]R Õ A| a Œ A} is a partition of A.
	Definition 1.5 Let S be a set. The partition of S, {Ai| i Œ I} I: index set, is
	i) Ai ¹ Æ, i Œ I. nonempty
	ii) Ai « Aj = Æ, when i ¹ j. disjoint
	iii) »iŒI Ai = A. exhaustive
	Thm. 2 Let R be a equivalent relation on A.
	Then the equivalent classes of R form a partion of A.
	Conversely, given a partition {Ai| i Œ I} of the set A,
	there is an equivalent relation R that has the set Ai, i Œ I,
	as its equivalent class.
	Realtion R Õ A ¥ A O(n2) where |A| = n.
	Equivalent relation R Õ A ¥ A O(n)
	9.6 Partial Ordering
	Def. 1 Let R Õ A ¥ A. R is called (ir)reflexive partial order,
	if it is (ir)reflexive, antisymmetric, and transitive.
	(A, R) is called partially odreded set or poset.
	Ex. 1 2 3 (Z, £), (Z+, |), (2S, Õ) are posets.
	Def. 2 Let (A, £) be poset and a, b Œ A. Then
	The elements a and b are comparable if either a £ b or b £ a.
	The elements a and b are incomparable if neither a £ b nor b £ a
	.
	Def. 3 Let (S, £) be poset. If "a, b Œ S, a and b are comparable,
	S is called totally ordered set, linearly ordered set, or chain.
	£ is called total order or linear order.
	Ex. 6, 7 (Z, £) is a total order, but (Z+, |) is not a total order
	Def. 4 A poset (S, £) is a well-ordered set, if £ is a total order,
	and every nonempty subset of S has a least emelent.
	Ex. 8 (Z+¥Z+, £L) is well-ordered, but (Z, £) is not well-orderd.
	Thm .1 Principle of Well-Ordered Induction
	Let (S, £) be a well-ordered set and "x Œ S, P(x), if
	"y Œ S .'. x < y: P(x) ﬁ P(y).
	proof Suppose $y Œ S, ØP(y).
	A = {x Œ S| ØP(x)} ¹ Æ.
	Let a Œ A be the least element.
	$a Œ A, "x Œ S .'. x < a: P(x) ﬁ P(a).
	Contradiction $y Œ S, ØP(y).
	Lexicographic order(ªÁ¿¸º¯º�)
	Let (A1, £1) and (A2, £2) be well-ordered sets. Then
	we define (A1 ¥ A2, £1¥2) a lexicographic order
	(a1, a2) £1¥2 (b1, b2), if (a1 <1 b1) ⁄ ((a1 =1 b1) Ÿ (a2 £2 b2)).
	Ext. Let (A1, £1), (A2, £2), º (An, £n) be well-ordered sets. Then
	we define (A1 ¥ A2 ¥ º ¥ An, £1¥2º¥n = £L) a lexicographic order
	(a1,a2,º,an) £L (b1,b2,º,bn), if 1£$i<n: [(1£"j<i: aj =j bj ) Ÿ (ai <i bi)].
	Ext. Let (V, £) be a well-ordered set. Then we define (V*, £L) as
	(a1,a2,º,an) £L (b1,b2,º,bn), if (1£$i<n: [(1£"j<i: aj =j bj ) Ÿ (ai < bi)].
	⁄ [(n < m) Ÿ (1£"i£n: ai = bi)].
	(V*, £L) is a well-ordered set.
	Hasse Diagram
	Let (A, £) be a poset. We say a covers b, if a < b Ÿ \$c Œ A, a £ c Ÿ c £ b.
	(A, covers) is a Hasse Diagram.
	Maximal and Minimal Elements
	Let (A, £) be a poset.
	We say a is a maximal, if \$b Œ A, a < b.
	We say a is a minimal, if \$b Œ A, b < a.
	We say a is the greatest element, if "b Œ A, b £ a.
	We say a is the least elements, if "b Œ A, a £ b.
	ub(S) = {c Œ A| a Œ S, a £ c} upper bound of S.
	lb(S) = {c Œ A| a Œ S, c £ a} lower bound of S.
	lub(S) = {c Œ A| c Œ ub(S), d Œ ub(S), c £ d}
	the least upper bound of S.
	glb(S) = {c Œ A| c £ lb(S), d Œ lb(S), d £ c}
	the greatest lower bound S.
	Lattice
	A poset (A, £) is called lattice. If every pair of elements has both a least upper bound, and a g...
	(Z, £) is a lattice. max, min: Z ¥ Z Æ Z
	(Z+, |) is a lattice. lcm, gcd: Z+ ¥ Z+ Æ Z+
	(2S, Õ) is a lattice. », «: 2S ¥ 2S Æ 2S
	Topological Sorting
	Lemma 1 Every finite nonempty poset (A, £p) has
	at least one minimal elements.
	Algorithm 1 Topological sorting
	Construct a total ordering <t from a partial ordering £p.
	a <t b, if and only if, a £p b or a and b are incomparable.

