9 Relations

9.1 Relations and Their Properties

Def. 1 Let A and B be two set. Then a **binary relation** R from A to B is subset of $A \times B$.

 $R \subseteq A \times B.$

A: domain of the relation R. B: range(codomain) of the relation R. Let $a \in A, b \in B$, Then $(a, b) \in R$ or $(a, b) \notin R$.

If $(a, b) \in R$, we also write a R b and we say a is **related to** b by R. If $(a, b) \notin R$, we also write a R b and a is **not related to** b by R. Two **aspects** of Relation

 $R \subseteq A \times B \qquad relation \ R \ is \ a \ set \ of \ pairs$ $(a, b) \in R$ $R: A \times B \rightarrow \{T, F\} \ relation \ R \ is \ a \ infix \ boolean \ binary \ operation$ $a \ R \ b$

Ex. $(3, 3) \in = and (3, 4) \notin =; or 3 = 3 and 3 \neq 4.$

ii) If $\exists a \in A$ and $\exists b \in B$. *i. a* R b, R *is* **not** a function. all the elements in the domain must have its related image

Let $R \subseteq A \times B$ *. Then*

We write $R(a) = \{b_1, b_2, ..., b_n\} \in R$, if $1 \le \forall i \le n$: $(a, b_i) \in R$.

<u>A function is a special kind(subclass) of a relation</u> **Three** faces of the relation R form A to B. *i) R is a subset of pairs* $R \subset A \times B$, $(a, b) \in R$ where $a \in A$ and $b \in B$. *ii) R is a infix binary boolean(relational) operator* $R: A \times B \rightarrow \{\mathbf{T}, \mathbf{F}\}$ a R b where $a \in A$ and $b \in B$. iii) R is a set valued function from A to 2^{B} . $R \cdot A \rightarrow 2^B$ $R(a) = \{b_1, b_2, ..., b_n\}$ where $a \in A$ and $\{b_1, b_2, ..., b_n\} \in 2^B$. if $1 \leq \forall i \leq n$, $(a, b_i) \in R$ or $a R b_i$. for $n \geq 0$, if $n=0, R(a) = \{b_1, b_2, ..., b_n\} = \emptyset$. Note that $\forall a \in A, \exists 1 \{b_1, b_2, ..., b_n\} \in 2^B$ is unique.

Three notations for the relation i) subset of $A \times B$, $(a, b) \in R$. $R \subseteq A \times B$ ii) infix binary boolean operation, $a \ R \ b$, $R: A \times B \rightarrow \{\mathbf{T}, \mathbf{F}\}, a \ R \ b$. Example =, <, \leq , ... $\subseteq N \times N \text{ or } N \times N \rightarrow \{\mathbf{T}, \mathbf{F}\}$ $3 = 3, 3 \neq 4, 3 \leq 3, ...$ iii) set valued function, $R(a) = \{b_1, b_2, ..., b_n\}$ or \emptyset . $R: A \rightarrow 2^B$.

Relation on A Set

Def. 2 Let A be a set and $R \subseteq A \times A$. R is called a relation on A. Relation on A is a **directed graph** with **vertices** A and **edges** R.

Properties of Relations

Def. 3 A relation R is **reflexive**, if $\forall a \in A$, a R a. A relation R is **irreflexive**, if $\forall a \in A$, a R a. A relation may be **neither** reflexive **nor** irreflexive.

Def. 4 A relation R is symmetric, if $a \ R \ b \Rightarrow b \ R \ a$. A relation R is asymmetric, if $a \ R \ b \Rightarrow b \ R \ a$. A relation R is antisymmetric, if $(a \ R \ b \land b \ R \ a) \Rightarrow (a = b)$. or if $(a \ R \ b \land a \neq b) \Rightarrow b \ R \ a$. If a relation is a asymmetric then it is also antisymmetric. (\subseteq)

Def. 5 A relation R is **transitive**, if $a R b \wedge b R c \Rightarrow a R c$.

Combining Relations

Let $R_1, R_2 \subseteq A \times B$. Consider $R_1 \cup R_2, R_1 \cap R_2, R_1 \oplus R_2, R_1 - R_2, R_2 - R_1$. **Def. 6** Let $R \subset A \times B$, $S \subseteq B \times C$. Then composition of R and S, denoted $as S \circ R = \{(a, c) \in A \times C | (a, b) \in R, (b, c) \in S\}.$ **Def.** 7 Let $R \subset A \times A$. Then for $n \geq 1$, $R^{l} \equiv R$ basis $R^{n+1} = R^n \circ R$ induction Def. 6.1 Let A be a set. We define an identity relation $id_A = \{(a, a) \in A \times A \mid a \in A\}$ = Δ in this text sec. 9.4 in p. 977 *Col.* 0.5 *Let* $R \subseteq A \times B$. *Then* $R \circ id_A = id_A \circ R = R$. $\therefore id_A$ is a *identity* element for *composition*. **Def.** 7.1 Let $R \subseteq A \times A$. Then for $n \in \mathbb{N}$, $R^0 = id_A$ $(x^0 = 1)$ basis $R^{n+1} = R^n \circ R$ induction

Thm. 1 Let $R \subseteq A \times A$. *R* is *transitive*, if and only if, $R^n \subseteq R$ for $\forall n \ge 1$. *Proof*:

1. (if) $\mathbb{R}^n \subseteq \mathbb{R}$ for $\forall n \ge 1 \Rightarrow \mathbb{R}$ is transitive. Since $\mathbb{R}^2 \subseteq \mathbb{R}$. If $(a, b) \in \mathbb{R}$ and $(b, c) \in \mathbb{R}$, $(a, c) \in \mathbb{R}^2$. $\therefore (a, c) \in \mathbb{R}$ $\therefore \mathbb{R}$ is transitive.

2.(only if) R is transitive $\Rightarrow R^n \subseteq R$ for $\forall n \ge 1$. mathematical induction on $n \in \mathbb{N}^+$. basis Trivial for n = 1(since $R^1 = R$, by definition). induction Assume $R^n \subseteq R$ for some $n \in \mathbb{N}^+$ and R is transitive. Consider $(a, b) \in R^{n+1}$, then $\exists x \in A . \exists . (a, x) \in R$ and $(x, b) \in R^n$. $R^n \subseteq R, \therefore (x, b) \in R$. induction hypothesis Since R is transitive; $(a, x) \in R$ and $(x, b) \in R \Rightarrow (a, b) \in R$. $\therefore R^{n+1} \subseteq R$. 9.2 *n*-ary Relations and Their Applications Def. 1 Let $A_1, A_2, ..., A_n$ be sets. $R \subseteq A_1 \times A_2 \times ... \times A_n$ is a *n*-ary relation on $A_1 \times A_2 \times ... \times A_n$. The sets $A_1, A_2, ..., A_n$ are called the **domains** of the relations, and *n* is called as the **degree** of *R*.

Database and Relations

 $\begin{array}{ll} \textit{relational data model: } R \subseteq A = A_1 \times A_2 \times \ldots \times A_n \textit{ is a data base} \\ \textit{record} & (a_1, a_2, \ldots, a_n) \in R, \\ \textit{field} & 1 \leq \forall f \leq n : a_f \in A_f. \\ (\textit{primary}) \textit{key field: } 1 \leq \exists k \leq n : \forall K \in A_k . \mathfrak{i}. (a_1, a_2, \ldots, K, \ldots, a_n) \in R, \\ & |(a_1, a_2, \ldots, K, \ldots, a_n)| \leq 1. \end{array}$

The dadabase R is said to be functional in the (key) field A_k .

Examle Table1 Students (St_name, St_id, Major, GPA) p. 564

Operations on n-ary Relations Let $R \subseteq A = A_1 \times A_2 \times \ldots \times A_n$. Then **Def.** 2 Selection operator: Let $C: A \rightarrow \{\mathbf{T}, \mathbf{F}\}$. Then $S_{C}(R) = \{a \in R | C(a), a \in A\}.$ C: condition S_C : selection operator on R **Def.** 3 Projection Operator: $P_{i_1i_2...i_m}$ where $i_1 < i_2 < ... < i_m \le n$ maps *n*-tuple $(a_1, a_2, ..., a_n) \in R$, to the *m*-tuple $(a_{i_1}, a_{i_2}, ..., a_{i_m})(i_m \le n)$. $P_{\{i_k\}} : A \to A_{i_1} \times A_{i_2} \times ... \times A_{i_m}, if \{i_k\} = (i_1, i_2, ..., i_m) for \ 1 \le k \le m.$ $P_{i_1,i_2}(a_1, a_2, ..., a_n) = (a_{i_1}, a_{i_2}, ..., a_{i_m}) \quad i_m \leq n.$ **Def**. 4 **Join** Operator: Let $R_1 \subseteq A_1 \times \ldots \times A_{m-p} \times C_1 \times \ldots \times C_p$ and $R_2 \subseteq C_1 \times \ldots \times C_p \times B_1 \times \ldots \times B_{n-p}$. Then $J(R_1, R_2) \in A_1 \times \ldots \times A_{m-p} \times C_1 \times \ldots \times C_p \times B_1 \times \ldots \times B_{n-p}$. If R_1 : m-tuples, R_2 : n-tuples, then $J(R_1, R_2)$: m+n-p-tuples. $(p \leq m, n)$

9.3 Representing Relations <u>Representing Relation as a Boolean Matrix</u> $R: A \times B \rightarrow \{0, 1\}$. Let $A = \{a_1, a_2, ..., a_m\}$ and $B = \{b_1, b_2, ..., b_n\}$. A boolean matrix $M_R = [m_{ij}]$ for the relation R where $1 \leq \forall i \leq m: 1 \leq \forall j \leq n:$ $m_{ij} = 1, if (a_i, b_j) \in R,$ $m_{ij} = 0, if (a_i, b_j) \notin R.$ We may write $M_R^{A \times B}[m_n]$ instead of M_P if needed

We may write $M_R^{A \times B}[m_{ij}]$ instead of M_R , if needed.

Representing Relation as a Directed Graph(Digraph)Def. 1 A directed graph or digraph G = (V, E) consistes ofa set V of vertices, and a set $E \subseteq V \times V$ of edges(arcs). $R \subseteq A \times A.$ \Leftrightarrow G = (A, R)relation R on A vs. digraph with vertices A and edges R

9.4 Closure of Relations <u>Closures</u> Let $R \subseteq A \times A$ and $\mathbf{P} = \{\text{reflextive, symmetric, transitive}\}$. Then We define a **p** closue of R as $S \subseteq A \times A$. \ni . (1) $R \subseteq S$ and $\forall T \subseteq A \times A$ has the property $\mathbf{p} \in \mathbf{P}, R \subseteq T$, and $S \subseteq T$. (1) $R \subseteq S$ and (2) smallest one among T's(**p**)).

Reflexive closure of R $R \cup id_A$. $id_A = \Delta$ in the text(Δ_A)diagonal relation on A.Symetric closure of R $R \cup R^{-1}$.

Path in DigraphDef. 1 Let G = (V, E) be a digrph. For $a, b \in V$, a path from $a, b, Path(a,b) = (x_0, \underline{x_1}), (\underline{x_1}, x_2), \dots, (x_{n-1}, x_n)$ $1 \le i \le n$: $(x_{i-1}, x_i) \in E$, and $x_0 = a, x_n = b$.a sequence of edges of length n

The path may be also denoted as a sequence of vertices $Path^{V}(a,b) = (x_{0}, x_{1}, x_{2}, ..., x_{n})$ of length n. We view the set of empty edges as a path of length 0 from $a \in V$ to a. A path of length $n \ge 1$ that begins and ends at the same vertex is called cycle.

Thm. 1 Let $R \subseteq A \times A$. There is a path of length $n \ge 1$ from a to b, if and only if, $(a, b) \in R^n$. proof easy(mathematical induction) Def. 1 A connetivity relation $R^+ = \{(a, b) | (a, b) \in R^n, \forall n \ge 1\}$ $R^+ = \bigcup_{i \in \mathbb{N}_1} R^i = R^1 \cup R^2 \cup \dots$ transitive closure of R. $R^* = \bigcup_{i \in \mathbb{N}_0} R^i = R^0 \cup R^1 \cup R^2 \cup \dots$ reflexive and transitive closure of R.

<u>Computing transitive closure \underline{R}^* .</u>

Let A and B be sets,
$$R \subseteq A \times A$$
, f, g: $A \to 2^C$.(set valued functions), and
 $f(a) = \{c \in C | c \in g(a)\} \cup \{c \in C | a R b, c \in f(b)\}$.
 $f(a) = \{c \in g(a)\} \cup \{c \in f(b) | a R b\}$.
 $f(a) = g(a) \cup \bigcup_{a R b} f(b)$. (recursive definition of f) Then
 $f(a) = \{c \in C | c \in g(b), a R^* b\}$.
 $f(a) = g^*(a)$. (iterative definition of f)

Warshall's algorithm Depth first search

$$O(n^3)$$

 $O(n^2)$

Algorithm Depth first search S: stack of Vertex; n(Vertex) array of Depth; procedure Traverse(x: Vertex; d: Depth); push x onto S; n(x) := d; f(x) := g(x);for $y \in Vertex$ where x R y doif n(y) = 0 then Traverse(y, d+1) fi; n(x) := min(n(x), n(y)); $f(x) := f(x) \cup f(y)$ od: if n(x) = d then repeat $y = pop \text{ of } S; n(y) := infinite; \quad f(y) := f(x)$ *until* y = xfi end procedure Traverse for $x \in Vertex \, do \, n(x) := 0;$ $f(x) := \{\} od;$ for $x \in Vertex$ where n(x) = 0 do Traverse(x, 1) od

9.5 Equivalence Relations

Def. 1 Let $R \subseteq A \times A$. R is called **equivalence** relation, if it is reflexive, symmetric, and transitive.

Def. 2 $a, b \in A$ are said to be related **equivalent**, written $a \sim b$, if R is an equivalent relation on A and a R b.

Def. 3 Let $R \subseteq A \times A$ be an equivalence relation. $[a]_R = \{b | a R b\}$ is called the equivalence class of a w.r.t. R. If $b \in [a]_R$, b is called the representative of the equivalent class. Note that $a \in [a]_R$, since R is reflexive.

 $Ex. \equiv_{4} \subseteq \mathbb{Z} \times \mathbb{Z} \text{ is an equivalent relation. Equivalent classes are} \\ [0]_{\equiv_{4}} = \{\dots, -8, -4, 0, 4, 8, \dots\} \\ [1]_{\equiv_{4}} = \{\dots, -7, -3, 1, 5, 9, \dots\} \\ [2]_{\equiv_{4}} = \{\dots, -6, -2, 2, 6, 10, \dots\} \\ [3]_{\equiv_{4}} = \{\dots, -5, -1, 3, 7, 11, \dots\} \end{cases}$

Thm. 1 Let $R \subseteq A \times A$ be an **quivalence** relation. Three statments are logically equivalent.

i) a R b *ii)* $[a]_R = [b]_R$ *iii)* $[a]_R \cap [b]_R \neq \emptyset$. *proof*

 $1) i) \rightarrow ii)$

 $\forall c \in [a]_R, a R c, a R b, b R a. \therefore b R c, c \in [b]_R. \therefore [a]_R \subseteq [b]_R.$ $\forall c \in [b]_R, b R c, a R b. \therefore a R c, c \in [a]_R. \therefore [b]_R \subseteq [a]_R.$ $2) ii) \rightarrow iii) Assume [a]_R = [b]_R, a R b. \therefore a, b \in [a]_R \cap [b]_R \neq \emptyset.$ $3) iii) \rightarrow i) Suppose [a]_R \cap [b]_R \neq \emptyset, [a]_R \neq \emptyset and [b]_R \neq \emptyset.$ $\exists c \in [a]_R \land c \in [b]_R. a R c, b R c. c R b, \therefore a R b.$

Lemma 1.5 *Let*
$$R \subseteq A \times A$$
 be an equivalence relation
 $\cup_{a \in A} [a]_R = A.$ $a \in [a]_R.$
 $\therefore \{[a]_R \subseteq A | a \in A\}$ *is a partition of* $A.$

Definition 1.5 Let S be a set. The partition of S, $\{A_i | i \in I\}$ I: index set, is $i) A_i \neq \emptyset, i \in I.$ nonempty $ii) A_i \cap A_j = \emptyset$, when $i \neq j$.disjoint $iii) \cup_{i \in I} A_i = A.$ exhaustive

Thm. 2 Let R be a equivalent relation on A. Then the **equivalent classes** of R form a **partion** of A. Conversely, given a **partition** $\{A_i | i \in I\}$ of the set A, there is an **equivalent relation** R that has the set A_i , $i \in I$, as its **equivalent class**.

Realtion $R \subseteq A \times A$ $O(n^2)$ where |A| = n.Equivalent relation $R \subseteq A \times A$ O(n)

9.6 Partial Ordering
Def. 1 Let R ⊆ A × A. R is called (ir)reflexive partial order, if it is (ir)reflexive, antisymmetric, and transitive. (A, R) is called partially odreded set or poset.
Ex. 1 2 3 (Z, ≤), (Z+, /), (2S, ⊆) are posets.

Def. 2 Let (A, \leq) be poset and $a, b \in A$. Then The elements a and b are **comparable** if either $a \leq b$ or $b \leq a$. The elements a and b are **incomparable** if **neither** $a \leq b$ **nor** $b \leq a$

Def. 3 Let (S, \leq) be poset. If $\forall a, b \in S$, a and b are comparable, S is called totally ordered set, linearly ordered set, or chain. \leq is called total order or linear order.

Ex. 6, 7 (\mathbf{Z} , \leq) *is a total order, but* (\mathbf{Z}^+ , |) *is not a total order*

Def. 4 A poset (S, \leq) is a well-ordered set, if \leq is a total order, and every nonempty subset of S has a least emelent.

Ex. 8 ($\mathbf{Z}^+ \times \mathbf{Z}^+$, $\leq_{\underline{L}}$) *is well-ordered*, *but* (\mathbf{Z} , \leq) *is not well-orderd*.

Thm .1 Principle of Well-Ordered Induction Let (S, \leq) be a well-ordered set and $\forall x \in S, P(x)$, if $\forall y \in S . \exists x < y: P(x) \Rightarrow P(y).$ proof Suppose $\exists y \in S, \neg P(y).$ $A = \{x \in S | \neg P(x)\} \neq \emptyset.$ Let $a \in A$ be the least element. $\exists a \in A, \forall x \in S . \exists x < a: P(x) \Rightarrow P(a).$ Contradiction $\exists y \in S, \neg P(y).$

Lexicographic order(사전순서) Let (A_1, \leq_1) and (A_2, \leq_2) be well-ordered sets. Then we define $(A_1 \times A_2, \leq_{1 \times 2})$ a <u>lexicographic order</u> $(a_1, a_2) \leq_{1 \times 2} (b_1, b_2), \text{ if } (a_1 <_1 b_1) \lor ((a_1 =_1 b_1) \land (a_2 \leq_2 b_2)).$ **Ext.** Let $(A_1, \leq_1), (A_2, \leq_2), \dots (A_n, \leq_n)$ be well-ordered sets. Then we define $(A_1 \times A_2 \times \ldots \times A_n, \leq_{I \times 2} \ldots \times a_n = \leq_I)$ a lexicographic order $(a_1, a_2, \dots, a_n) \leq_{I} (b_1, b_2, \dots, b_n), \text{ if } 1 \leq^{\exists} i < n: [(1 \leq^{\forall} j < i: a_i =_i b_i) \land (a_i <_i b_i)].$ **Ext.** Let (V, \leq) be a well-ordered set. Then we define (V^*, \leq_I) as $(a_1, a_2, \dots, a_n) \leq_{\mathbf{L}} (b_1, b_2, \dots, b_n), \text{ if } (1 \leq^{\exists} i < n: [(1 \leq^{\forall} j < i: a_j =_i b_i) \land (a_i < b_i)].$ $\vee [(n < m) \land (1 \leq \forall i \leq n: a_i = b_i)].$

 $(V^*, \leq_{\underline{L}})$ is a well-ordered set.

Hasse Diagram

Let (A, \leq) be a poset. We say a **covers** b, if $a < b \land {}^{\ddagger}c \in A$, $a \leq c \land c \leq b$. (A, covers) is a Hasse Diagram. Maximal and Minimal Elements Let (A, \leq) be a poset. We say *a* is a *maximal*, if $\exists b \in A, a < b$. We say *a* is a *minimal*, if $\exists b \in A, b < a$. We say *a* is the greatest element, if $\forall b \in A, b \leq a$. We say *a* is the *least elements*, if $\forall b \in A$, $a \leq b$. $ub(S) = \{ c \in A | a \in S, a \leq c \}$ upper bound of S. $lb(S) = \{ c \in A | a \in S, c \leq a \}$ lower bound of S. $lub(S) = \{ c \in A | c \in ub(S), d \in ub(S), c \leq d \}$ the **least upper bound** of S. $glb(S) = \{ c \in A \mid c \leq lb(S), d \in lb(S), d \leq c \}$ the greatest lower bound S.

A poset (A, \leq) is called *lattice*. If every pair of elements has both a least upper bound, and a greatest lower bound.

 (\mathbf{Z}, \leq) is a lattice.max, min: $\mathbf{Z} \times \mathbf{Z} \to \mathbf{Z}$ $(\mathbf{Z}^+, |)$ is a lattice.lcm, gcd: $\mathbf{Z}^+ \times \mathbf{Z}^+ \to \mathbf{Z}^+$ $(2^S, \subseteq)$ is a lattice. $\cup, \cap: 2^S \times 2^S \to 2^S$

Topological SortingLemma 1 Every finite nonempty poset (A, \leq_p) hasat least one minimal elements.**Algorithm 1** Topological sortingConstruct a total ordering $<_t$ from a partial ordering \leq_p . $a <_t b$, if and only if, $a \leq_p b$ or a and b are incomparable.

22